首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
利用改性纳米Fe/Ni双金属还原降解2,4-二氯酚(2,4-DCP),考察了p H对Fe/Ni还原降解2,4-DCP的效率的影响。结果表明:当p H=5.5,反应时间为120 h时,由于吸附及还原2种作用,Fe/Ni对水中2,4-DCP的去除率接近100%,且47.0%的2,4-DCP被脱氯还原为苯酚。p H5.5时,Fe0被腐蚀消耗较多,且H+会与2,4-DCP争夺电子,不利于还原反应的进行;p H5.5时,因参与脱氯还原的H+不足及铁氢氧化物沉淀覆盖活性位点,导致还原降解效率随着p H升高而降低。通过分析中间产物和最终产物的浓度变化,明确了2,4-DCP的还原降解途径:(1)2,4-DCP被Fe/Ni还原脱去一个氯生成2-氯酚或4-氯酚,然后继续脱氯生成苯酚;(2)2,4-DCP直接被脱去2个氯生成苯酚。  相似文献   

2.
以多壁碳纳米管(CNTs)为载体,采用共沉淀法制得纳米CNTs/Fe3O4材料。对纳米CNTs/Fe3O4材料进行了TEM、XRD表征。合成的纳米CNTs/Fe3O4材料修饰石墨电极用作阴极,并对苯酚进行电化学降解研究。考察了电压、pH值对苯酚降解的影响,在优化的条件下,电压为5 V、pH值为5、对150 mg/L苯酚原液降解120 min,降解率可达92%。探讨了纳米材料修饰石墨电极的电化学行为,表明纳米CNTs/Fe3O4材料修饰电极能够促进O2生成H2O2,纳米Fe3O4中的Fe与H2O2发生Fenton反应,产生·OH氧化降解苯酚。  相似文献   

3.
纳米四氧化三铁对2,4-D的脱氯降解   总被引:8,自引:4,他引:4  
方国东  司友斌 《环境科学》2010,31(6):1499-1505
采用纳米四氧化三铁(Fe3O4)降解水溶液中的2,4-二氯苯氧乙酸(2,4-D),考察了2,4-D初始浓度、纳米Fe3O4投加量、溶液pH和温度等因素对2,4-D降解率的影响.结果表明,纳米Fe3O4对2,4-D有显著的降解效果,初始浓度为10 mg/L的2,4-D, 48 h内降解率可达48%.纳米Fe3O4对2,4-D的降解是一个还原脱氯过程,反应体系中氯离子浓度随2,4-D浓度降低而升高.LC/MS分析表明,2,4-D降解的主要产物是苯酚,其他中间产物是2,4-二氯苯酚(2,4-DCP)、4-氯苯酚(4-CP)和2-氯苯酚(2-CP).溶液中2,4-D的降解符合准一级反应动力学,产物4-CP、2,4-DCP和苯酚的反应速率常数K分别为0.0043、0.0026和0.0032 h -1.环境条件对降解效率有显著影响,2,4-D初始浓度在0~10 mg/L、纳米Fe3O4投加量0~300 mg/L的范围内,2,4-D降解率随初始浓度和纳米Fe3O4投加量的增加而增大;pH对2,4-D的脱氯降解有显著影响,在pH为3.0时,纳米Fe3O4对2,4-D的还原脱氯效果最好;温度升高,可以提高脱氯反应速率.  相似文献   

4.
采用批处理实验方式,对"Fe0/优势脱氯菌"体系降解2,4,6-TCP过程进行研究,探讨了零价铁与微生物的协同作用及其机制.结果表明,Fe0对微生物具有促进生长和界面富集的作用,"Fe0/优势脱氯菌"体系菌浓度(D600表示)是单独优势脱氯菌体系的约1.7倍,反应96 h铁表面有大量细菌附着生长,其形态呈现短杆状或类球状;Fe0腐蚀产生的OH-对体系酸化起平衡调节作用,在pH值7.0、Fe0浓度5 g.L-1、2,4,6-TCP浓度30 mg.L-1的初始条件下,体系pH值稳定在7.8左右,有利于2,4,6-TCP还原脱氯反应的进行和优势脱氯菌的生长;2,4,6-TCP的主要降解路径为2,4,6-TCP→2,4-DCP→4-CP.  相似文献   

5.
纳米与微米级零价铁降解2,4,6-三氯酚动力学比较   总被引:3,自引:1,他引:3       下载免费PDF全文
研究了在反应表面积相近条件下,纳米与微米级零价铁(Fe0)降解水相中2,4,6-三氯酚(TCP)的动力学差异.结果表明,纳米与微米级Fe0降解TCP过程均符合准一级反应动力学,表观反应速率常数Kobs分别为0.0165h-1和0.0046h-1,其比值(3.6)接近纳米与微米级Fe0对TCP的初始吸附量比值(2.9).造成2种Fe0降解与吸附效率差异的主要原因在于颗粒表面点位单元活性不同.Fe0对TCP的作用可分为2个阶段:前一阶段非反应点位主导的吸附作用高于反应点位主导的降解作用,后一阶段刚好相反.反应过程中,纳米与微米级Fe0反应组体系pH值从初始的5.7分别升至10.5和8.2,体系pH值处于酸性范围时可提高TCP降解速率.纳米Fe0在反应过程中表面氧化不断增加,其中大部分铁氧化物沉积在颗粒表面,少量以离子态存在于水相中.  相似文献   

6.
为了解Fe2+与Fe0在活化PDS(过二硫酸盐)降解活性艳蓝KN-R时的差异,通过序批试验,考察了Fe2+/PDS和Fe0/PDS体系中c(Fe2+)、ρ(Fe0)、c(PDS)和初始pH对KN-R降解的影响. 结果表明:在Fe2+/PDS体系中,最佳反应条件〔初始pH为3.0,c(Fe2+)为1.0 mmol/L,c(PDS)为2.0 mmol/L〕下,180 min后KN-R的去除率达到96.55%;过高的pH和c(Fe2+)对KN-R的降解均有明显的抑制作用. 在Fe0/PDS体系中,当pH和ρ(Fe0)过高时,KN-R的去除率仍维持在较高水平,当pH为9.0时,180 min后KN-R的去除率为90.53%;当ρ(Fe0)为448 mg/L时,50 min后KN-R的去除率就能达到94.35%. 在2个体系中,c(PDS)的升高均能显著提高KN-R的去除率,当c(PDS)由0.5 mmol/L增至8.0 mmol/L时,KN-R的去除率由47.25%(Fe2+/PDS体系)和57.00%(Fe0/PDS体系)增至100%. 动力学分析显示,KN-R的降解均遵循一级反应动力学;最佳反应条件下2个体系中的活性自由基均以硫酸根自由基(SO4-·)为主. 因此,在降解KN-R过程中,Fe0/PDS体系的性能明显优于Fe2+/PDS体系.   相似文献   

7.
孙鹏  张凯凯  张玉  张延荣 《环境科学》2020,41(5):2301-2309
二价铁离子活化过硫酸盐(PS)产生自由基可降解有机污染物,但体系中Fe(Ⅲ)/Fe(Ⅱ)循环速率较慢,成为制约降解效率的关键因素之一.为提高反应体系效率,制备向日葵秸秆生物炭(SFBC),以苯甲酸(BA)为目标污染物,探究SFBC强化Fe(Ⅲ)/S_2O~(2-)_8体系降解BA的效果.SFBC表征结果说明其具有孔隙结构,由无定形炭组成,表面有丰富的官能团及持久性自由基(PFRs).考察了反应条件(pH、PS浓度和SFBC投加量)对降解的影响,结果表明,SFBC/Fe(Ⅲ)/S_2O~(2-)_8体系对BA降解效率明显高于Fe(Ⅲ)/S_2O~(2-)_8及SFBC体系,在SFBC=2.0 g·L~(-1)、BA=10.0mg·L~(-1)、PS=2.0mmol·L~(-1)、Fe(Ⅲ)=1.0mmol·L~(-1)和pH=3.0条件下, 90 min时BA降解率达100.00%;自由基猝灭实验及电子顺磁共振光谱(EPR)实验表明,SO~-_4·和·OH共同参与BA降解并以SO~-_4·为主导;循环实验及实际水体影响说明SFBC具有较好地循环稳定性及实际应用性.机制分析阐明PFRs和—OH给出电子还原Fe(Ⅲ)生成Fe(Ⅱ),进而由Fe(Ⅱ)活化PS高效降解BA.  相似文献   

8.
H2O2引发的UV/Fenton苯酚光催化降解   总被引:7,自引:2,他引:5       下载免费PDF全文
研究了H2O2引发光催化降解方法对废水中微量苯酚的去除效果,应用传感技术分析了降解过程中H2O2浓度变化,及其H2O2引发光催化降解苯酚的机理,考察了影响苯酚光催化降解的因素,确定了最佳降解试验条件为:H2O2 0.075~0.30mmol/L,Fe3+ 0.1~0.15mmol/L,pH值 4~5.在此条件下,苯酚初始浓度为50mg/L的含酚废水反应2h,苯酚降解率达到95%,矿化去除率达77%.  相似文献   

9.
为有效抑制纳米级Pd/Fe颗粒的团聚和钝化及改善其表面特性,将纳米SiO_2包覆在Pd/Fe颗粒表面,超声波辐照下液相还原法制备纳米级Pd/Fe@SiO_2复合颗粒,采用TEM、SEM、XRD、EDX及BET表征其物性,以2,4-二氯苯酚(2,4-DCP)为目标污染物,探究其对2,4-DCP的还原脱氯影响因素、降解机理和动力学,结果表明:制备的纳米级颗粒粒径均匀、分散性好,比表面积大;体系中纳米级Pd/Fe投加量、钯化率、TEOS投加量、反应温度及溶液初始pH均会对2,4-DCP的降解效果产生明显影响;并推测出纳米级Pd/Fe@SiO_2复合颗粒对2,4-DCP的降解机理即快速吸附—逐步脱氯—最终脱附释放,其降解符合拟一级动力学关系.  相似文献   

10.
纳米Fe3O4/H2O2降解诺氟沙星   总被引:3,自引:1,他引:2  
张娣  王懿萱  牛红云  孟昭福 《环境科学》2011,32(10):2943-2948
采用纳米Fe3O4催化H2O2氧化降解水环境中的诺氟沙星.考察了溶液酸度、温度、催化剂和H2O2浓度对诺氟沙星降解的影响,对比不同底物在Fe3O4/H2O2体系中的降解情况,并进一步探讨了其反应机制.结果表明,溶液酸度显著影响诺氟沙星的降解率,在酸性条件下(pH=3.5)诺氟沙星的降解效率最高.诺氟沙星的降解率随纳米F...  相似文献   

11.
以2,4-二氯酚(2,4-DCP)为目标污染物,采用间歇试验,接种厌氧混合微生物,考察葡萄糖共基质条件下不同pH值时零价铁(Fe)0对2,4-DCP生物降解的效应,并对Fe0与厌氧微生物联合体系的作用机理进行探讨。结果表明:Fe0与厌氧微生物联合作用可提高2,4-DCP的降解效果,且中性或偏碱性环境下联合体系对目标污染物的促进效果较酸性环境明显,初始pH值为8时目标污染物的降解效果最好。Fe0在厌氧条件下腐蚀产生的OH-可有效平衡葡萄糖发酵产生的有机酸,使体系挥发性脂肪酸(VFA)的浓度维持在较低水平(300 mg/L),同时促使联合体系pH值上升从而利于目标物2,4-DCP的降解。Fe0在酸性环境的腐蚀较强,腐蚀产物以Fe2+为主,Fe3+含量较少。不同pH值时"Fe0+微生物"体系的COD去除率与目标物降解效果有一定相关性。  相似文献   

12.
铁-草酸配合物光分解降解活性染料的研究   总被引:2,自引:0,他引:2  
研究了铁(Ⅲ)-草酸配合物在可见光及太阳光照射下,对活性染料的光解降解作用。结果表明,在pH=4.0、Fe(Ⅲ)/H2E2O4=0.060mmol/L/2.88mmol/L(草酸分2次加入)、光照3h的条件下,20mg/L的活性红的降解率为97.5%。溶液pH值、铁与草酸浓度比和活性染料浓度均对降解效果产生影响。  相似文献   

13.
研究了纳米Fe、Si体系降解3,3′,4,4′-四氯联苯(PCB77)的动力学差异.结果表明,纳米Fe0、纳米Fe3O4和纳米Si0对PCB77均有降解作用,该降解为还原脱氯反应.降解过程符合准一级反应动力学,反应速率常数Kobs分别为0.0177,0.0038,0.0045h-1.PCB77初始浓度为5mg/L,纳米材料投加量为5g/L,溶液pH4.5条件下,纳米Fe0体系对PCB77降解效果最为显著,64h时PCB77残留率仅为19.83%,氯离子浓度为50.3μmol/L,反应体系pH值从4.5升至5.26.纳米双元体系Fe0和Si0、Fe3O4和Si0对PCB77降解过程也符合准一级反应动力学,反应速率常数Kobs分别为0.0114,0.004h-1,其中纳米Fe0和Si0体系降解效果优于纳米Fe3O4和Si0体系.PCB77残留率分别为34.91%和66.62%,氯离子浓度分别为40.07,20.47μmol/L,反应体系pH值变化不明显.随着溶液初始pH值增加,纳米Fe0、纳米Fe3O4降解PCB77效果明显降低,但溶液pH值升高有利于纳米Si0对PCB77的降解.两组纳米双元体系对PCB77的降解效果受pH值影响小.  相似文献   

14.
为研究纳米Fe/Co合金对含TCs(盐酸四环素)废水的类Fenton催化性能,以及催化降解体系pH、H2O2投加量和活性成分浸出等因素对催化性能的影响.采用液相还原法制备纳米Fe/Co合金,并通过对比试验探究其类Fenton催化性能,Fe、Co的浸出量及其表面积结构变化与活性之间的关系.添加纳米Fe/Co合金的条件下,采用单因素分析方法研究体系pH、H2O2投加量和初始TCs浓度分别对TCs去除率的影响.结果表明:①在纳米Fe/Co合金制备过程中,添加PVP(聚乙烯吡咯烷酮)不仅能有效防止纳米Fe/Co合金发生团聚,且促进纳米Fe/Co合金比表面积增大(BET为113.8 m2/g).②纳米Fe/Co合金具有拓宽催化体系pH使用范围的优势;在pH为3.0~9.0范围内,纳米Fe/Co合金对30 mg/L TCs的去除率(87.2%~91.7%)远大于FeCl2(0~30.7%)和纳米Fe的去除率(0~28.2%);H2O2投加量超过150 mmol/L后,TCs的去除率达到最佳(86.2%).③纳米Fe/Co合金催化体系中(pH为3.0~11.0),活性成分Fe、Co浸出量分别为0.20~0.35和0.20~1.00 mg/L,均满足我国GB 3838—2002《地表水环境质量标准》,长期使用也不会造成浸出成分(Fe、Co)在环境中大量累积,对生态环境等可能造成的潜在风险大大降低.④纳米Fe/Co合金具有再利用性,催化利用4次后,对TCs的去除效果仍达50.0%以上.研究显示,纳米Fe/Co合金对去除TCs具有较高催化性能和再利用性,利于拓宽催化体系pH使用范围,具有稳定活性成分Fe、Co浓度的优势.   相似文献   

15.
光Fenton反应的Ce-Fe/Al2O3催化剂制备及性能表征   总被引:10,自引:1,他引:10  
采用等量浸渍法制备具有相同铁负载量的Fe/Al2O3和Ce-Fe/Al2O3催化剂,以解决光Fenton反应过程中催化剂溶出的问题并提高反应过程的pH值.通过X射线衍射(XRD)、扫描电镜(SEM)、氢程序升温还原(H2-TPR)及紫外-可见漫反射(UV-Vis DRS)等手段分别表征催化剂的物相结构、表面形貌、还原性能及光吸收特性,利用媒介黄的光Fenton脱色反应来考察催化剂的活性和稳定性.结果表明,铈掺杂使活性组分Fe2O3分散均匀,有效防止Fe2O3颗粒的长大,增加催化剂对光的吸收,增强催化剂的储氧能力,提高了催化剂的催化活性,降低铁的溶出.该催化剂在pH3.0~6.0条件下,60min内可将100mg/L媒介黄完全脱色,在pH6.0连续使用10次,其催化能力保持稳定.  相似文献   

16.
采用超声波/铁-炭微电解联用体系,以苯酚为目标污染物,考察了苯酚溶液初始pH值、初始浓度、铁屑与活性炭投加量等因素对联用体系降解苯酚效果的影响.结果表明:考察范围内,苯酚降解率随其初始浓度和溶液初始pH值的增加而降低,随铁屑与活性炭投加量的增加而升高.当苯酚初始浓度由50mg·L-1增至270mg·L-1,溶液初始pH值由3.0增至9.0时,降解率分别由91.3%和78.4%降至34.7%和50.7%;铁屑投加量为每L苯酚溶液中40g、160g和320g,铁屑与活性炭体积比均为1∶1时,降解率依次为31.8%、51.9%和72.8%.对比实验及动力学分析表明:联用体系中超声波(US)和铁-炭微电解对苯酚降解具有明显的协同作用,协同因子E=5.12,且降解过程符合假一级动力学规律,并根据降解速率常数随各影响因素的变化关系确定了宏观动力学模型.  相似文献   

17.
镍/铁二元金属对莠去津脱氯特性的影响   总被引:14,自引:3,他引:11  
为了考察Ni/Fe二元金属对莠去津的催化还原特性,分别以Fe粉和Ni/Fe体系作为还原和催化剂,在酸性条件下对莠去津的脱氯特性进行比较,并讨论了pH值,Ni/Fe配比以及金属添加量等因素对莠去津脱氯效率的影响.结果表明:与Fe粉比较,Ni/Fe体系对莠去津具有很明显的催化脱氯特性.在pH=2时,1.22%(W/W)Ni/Fe体系30min对莠去津的脱氯效率大于90%,相同条件下用Fe粉还原时,90min脱氯效率仅为22.21%通过Fe粉和Ni/Fe表面形态的比较以及实验结果的分析,对Ni/Fe体系的催化还原脱氯机理进行了初步探讨.  相似文献   

18.
铁铜催化剂非均相Fenton降解苯酚及机制研究   总被引:3,自引:0,他引:3  
通过浸渍法制备了负载于活性炭(AC)上的金属催化剂Fe/AC、Cu/AC和Fe-Cu/AC,并通过X射线衍射(XRD)、物理吸附仪及X射线光电子能谱(XPS)对其进行了表征.研究了非均相Fenton反应催化H2O2降解苯酚废水的工艺参数,并通过中间产物分析和电子自旋共振谱(ESR)探讨了过程反应机制.实验表明,Cu/AC催化剂中铜主要以CuO形式存在,Fe/AC中铁以多价态形式存在,以无定形形态分散于活性炭中.Fe/AC、Cu/AC和Fe-Cu/AC催化过氧化氢降解苯酚60 min内降解率分别达到96.7%、77.5%和99%;Cu/AC和Fe-Cu/AC催化剂中活性组分铜和铁有一定溶出,而Fe/AC中活性组分铁溶出很少,苯酚降解主要是以非均相催化为主,同时在三轮循环实验后的苯酚降解率仍然高达93%以上,显示了良好的催化稳定性.在优化条件pH=3、T=303 K及初始H2O2为4.38 mmol.L-1下,Fe/AC催化过氧化氢对苯酚和TOC去除率分别达到97%和53%,没有催化剂时苯酚几乎不降解.ESR结果表明Fe/AC催化过氧化氢产生了羟基自由基,证明苯酚降解是以羟基自由基氧化为主;通过高效液相色谱(HPLC)检测苯酚降解中间产物主要有邻苯二酚、对苯二酚和对苯醌,推测苯酚降解途径主要为邻位和对位的羟基取代反应.  相似文献   

19.
研究了超声波/零价铁协同降解苯酚的过程,并对其降解机理进行了研究,分别考察了零价铁投加量,溶液初始浓度,初始pH值,超声功率等因素对苯酚降解的影响规律。结果表明,超声波/零价铁工艺能有效的降解水中的苯酚,零价铁的最佳投加量为0.8 g/L,苯酚浓度越低处理效果越好,苯酚在酸性条件的降解率高于碱性条件,在0~400 W超声作用下,功率越大,降解率越大;超声波与零价铁粉对苯酚的降解具有协同作用,其降解过程符合一级动力学规律。在体系中加入自由基捕获剂正丁醇抑制了苯酚的降解,说明苯酚的降解过程主要依靠羟基自由基(.OH)的氧化作用。  相似文献   

20.
以陕北石油污染土壤中筛选出来的菌株Y7作为研究对象,用石油烃培养基进行驯化培养。通过石油烃降解率、OD(吸光度)值和pH值等指标来评价降解效果。研究结果表明菌株Y7可以对石油烃进行有效降解,并且在培养基中加入适量的Fe2+,对菌株的生长和石油烃的降解有一定促进作用,其中最佳Fe2+浓度为24 mg/L;菌株Y7在最佳Fe2+浓度的环境下,前3天降解石油烃效果最好,降解率可达40%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号