首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用δ—MnO2处理含亚砷酸盐的饮用水   总被引:3,自引:0,他引:3  
白树木 《化工环保》1998,18(2):86-88
综述了文献中有关从饮用水中去除亚砷酸盐的报导;着重介绍了用δ-MnO2从饮用水中去除亚砷酸盐的反应机理及温度、溶解氧、pH等因素对反应速度的影响。  相似文献   

2.
唐人勋 《化工环保》1995,15(6):347-351
比较了硫酸生产废水的几种除砷方法,认为铁屑还原-鼓风氧化-石灰凝沉工艺是可行的,此法具有处理量大、处理效果好、运行费用低等优点。  相似文献   

3.
城市污水除磷工艺及其原理   总被引:2,自引:2,他引:0  
介绍了城市污水中磷的危害、来源及其存在形式,对化学除磷方法及生物除磷原理进行了阐迷,分别介绍了几种典型生物除磷和新型除磷工艺的特点,并对国内外除磷技术的研究进行了展望.  相似文献   

4.
祝生杰  李翔 《化工环保》2000,20(4):57-58
离子交换技术的应用历史悠久 ,离子交换器已成为工业水处理中不可缺少的设备。然而 ,离子交换器运行一定时间后 ,必须用大量酸碱对树脂进行再生。所以 ,使用这种设备酸碱费用较高 ,劳动强度较大 ,对排放的废水必须处理 ,设备和下水道必须防腐。长期以来 ,人们不断研究不用酸碱和无公害的再生离子交换树脂的方法 ,国外最近开发成功的电去离子法 ( EDI) ,是一种将电渗析技术和离子交换技术结合在一起的脱盐新工艺。由于它能够连续不断地去除水中的离子 ,因此又称为连续去离子法( CDI)。1 EDI的应用和 DCJ的问世图 1  DCJ纵截面结构示…  相似文献   

5.
昆明发电厂在节能改造工程中扩建了两台100MW 机组,烟气收尘采用布袋除尘器,除灰系统为油隔离泵高浓度输灰,两炉灰渣量40t/h 左右。1号机于1987年12月投产,2号机于1988年8月投产。  相似文献   

6.
随着水体磷污染的日益加剧和排放标准的进一步严格化,研究开发经济、高效的污水除磷技术已成为当今污染控制工程领域的研究重点和热点.在分析、评价污水除磷技术现状的基础上探讨了它的发展趋势.  相似文献   

7.
高效除磷材料的除磷特性研究   总被引:1,自引:0,他引:1  
研究了高效除磷材料(Efficient Phosphorus Removal Composite,EPRC)的除磷特性,以及以此材料为填料的吸附柱对模拟含磷废水的除磷效果.试验结果表明: EPRC颗粒在15℃、25℃、35℃时的最大饱和吸附量分别达到1.9535mg/g、2.281mg/g、3.6724mg/g.以EPRC颗粒填充吸附柱处理模拟含磷废水时,停留时间8h、连续进水、运行8d,磷的平均去除率为93%,废水pH值略有升高.  相似文献   

8.
9.
本文根据溶解化学理论,对水力除灰系统冲灰水中常板出沉淀形成垢的组份进行化学平衡分析,推导出冲灰水析出沉淀的饱和pHs计算公式。以此为依据,对太原第二势电厂除灰管结垢倾向进行了分析,发现该厂除灰系统结垢的主要成分是亚硫酸钙,推断出结垢形成的大根位置,并对防垢技术和除垢技术进行了讨论。  相似文献   

10.
次氯酸钠氧化脱除黄磷尾气中的硫、磷杂质   总被引:20,自引:3,他引:20  
熊辉  杨晓利  李光兴 《化工环保》2002,22(3):161-164
采用次氯酸钠氧化工艺净化黄磷尾气,在次氯酸钠溶液中有效氯的质量分数为0.65%,PH为9、反应温度为285K,气体流速为0.6-0.8L/min的条件下,对尾气中H2S、PH3的脱除率分别达到99.9%,和99.8%,出口含量分别小于0.2mg/m^3和7mg/m^3,对有机硫也有30%的脱除能力。  相似文献   

11.
The burning rate of a slick of oil on a water bed is calculated by a simple expression derived from a one-dimensional heat conduction equation. Heat feedback from the flame to the surface is assumed to be a constant fraction of the total energy released by the combustion reaction. The constant fraction (χ) is named the burning efficiency and represents an important tool in assessing the potential of in situ burning as a counter-measure to an oil-spill. The total heat release, as a function of the pool diameter, is obtained from an existing correlation. It is assumed that radiative heat is absorbed close to the fuel surface, that conduction is the dominant mode of heat transfer in the liquid phase and that the fuel boiling temperature remains constant. By matching the characteristic thermal penetration length scale for the fuel/water system and an equivalent single layer system, a combined thermal diffusivity can be calculated and used to obtain an analytical solution for the burning rate. Theoretical expressions were correlated with crude oil and heating oil, for a number of pool diameters and initial fuel layer thickness. Experiments were also conducted with emulsified and weathered crude oil. The simple analytical expression describes well the effects of pool diameter and initial fuel layer thickness permitting a better observation of the effects of weathering, emulsification and net heat feedback to the fuel surface. Experiments showed that only a small fraction of the heat released by the flame is retained by the fuel layer and water bed (of the order of 1%). The effect of weathering on the burning rate decreases with the weathering period and that emulsification results in a linear decrease of the burning rate with water content.  相似文献   

12.
对富拉尔基发电总厂5号炉的设计条件进行了分析,针对燃用低硫煤,飞灰比电阻高,场地较小,除尘效率要求高的情况,在电除尘器的设计上采取有效措施,达到了排放要求。  相似文献   

13.
Establishing carbon balances has been proven to be an applicable and powerful tool in testing biodegradability of polymers. In controlled degradation tests at a 4-L scale with the model polymer poly(-hydroxybutyrate) (PHB), it was shown that the degree of degradation could not be determined with satisfactory accuracy from CO2 release alone. Instead, the course of degradation was characterized by means of establishing carbon balances for the degradation of PHB withAcidovorax facilis and a mixed culture derived from compost. Different analytical methods for determining the different carbon fractions were adapted to the particular test conditions and compared. Quantitative determination of biomass and residual polymer were the main problems in establishing carbon balances. Amounts of biomass derived from protein measurements depend strongly on assumptions of the protein content of the biomass. Selective oxidation of biomass with hypochlorite was used as alternative, but here problems arose from insoluble metabolic products. Determination of soluble components with the method of chemical oxygen demand (COD) also includes empirical assumptions but seems acceptable if the dissolved carbon fraction is in the range of some 10% total carbon. Results confirm both analytical assays and theoretical approaches, in ending up at values very close to 100%, within an acceptable standard deviation range under test conditions comparable to standard test practice.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

14.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

15.
Six film samples of low-density polypropylene (LDPE)/linear LDPE (LLDPE)/high-density polypropylene (HDPE) with varying ratios of LDPE (20–45 ... wt%) and LLDPE (25–50 wt%) having a fixed amount of HDPE at 30 wt% were prepared by blown film extrusion technique. The samples were aged at four different temperatures, 55°, 70°, 85°, and 100°C, for four different time periods in the interval of between 150 hours and up to 600 hours. The change in the structure of various constituents and the formation of various oxygenated (peroxy and hydroperoxy) and unsaturated groups during thermo-oxidative degradation was discussed by infrared spectroscopy. The visiosity-average molecular weight was found to have decreased slowly in the initial aging hours and temperatures, whereas it decreased by 10% with its previous value tensile strength that is, 100°C when aged for 600 hours. The tensile strength of the sample first increased by 67% at 55°C and 89% at 70°C up to 450 hours, whereas the values increased by 52.5% at 85°C and 33.9% at 100°C when aged for 150 hours and then decreased. The percentage elongation at break increased by 2.7% at 55°C and 10.7% at 70°C for 150 and 300 hours of aging, respectively, whereas the percentage decreased when aged at 85°C and 100°C for up to 600 hours of aging. The values of gel content (percent) increased and initial degradation temperature decreased with aging time and temperature.  相似文献   

16.
Octenyl succinate starch of degree of substitution (ds) 0.03, 0.07, and 0.11 was synthesized in an aqueous medium. These compounds were then tested for the susceptibility to enzymatic degradation. The multiple-enzyme regime of -amylase, amyloglucosidase, and pullulanase was chosen for the evaluation. This combination of enzymes had been proven to degrade 99.5% of unmodified starch to glucose and hence was chosen for this study. It was found that even small amounts of subsituent caused a considerable decrease in the extent of degradation. The net extent of degradation decreased with increasing ds. Surprisingly, the amount of glucose from all three substituted substrates was quite similar, suggesting the effect small amounts of subtituent had on the enzymatic activity.  相似文献   

17.
The simultaneous adsorption of copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb) ions from spiked deionized water and spiked leachate onto natural materials (peat A and B), by-product or waste materials (carbon-containing ash, paper pellets, pine bark, and semi-coke), and synthetic materials (based on urea-formaldehyde resins, called blue and red adsorbents) or mixtures thereof was investigated. The adsorbents that gave the highest metal removal efficiencies were peat A, a mixture of peat B and carbon-containing ash, and a mixture of peat A and blue. At an initial concentration of 5 mg/l for each metal, the removal of each species of metal ion from spiked water and spiked leachate solutions was very good (>90%) and good (>75%), respectively. When the initial concentration of each metal in the solutions was twenty times higher (100 mg/l), there was a noticeable decrease in the removal efficiency of Cu2+, Cd2+, and Ni2+, but not of Pb2+. Langmuir monolayer adsorption capacities, qm, on peat A were found to be 0.57, 0.37, and 0.36 mmol/g for Pb2+, Cd2+, and Ni2+, respectively. The order of metal adsorption capacity on peat A was the same in the case of competitive multimetal adsorption conditions as it was for single-element adsorption, namely Pb2+ > Cd2+ ≥ Ni2+. The results show that peat alone (an inexpensive adsorbent) is a good adsorbent for heavy metal ions.  相似文献   

18.
采用结构化/非结构化混合网格技术、多孔介质模型及k-ε两方程湍流模型,对某袋式除尘器及进出口管道内的气体流场进行了数值计算.计算结果表明,合理布置导流板后,袋式除尘器两箱体流量偏差为1.8%;除尘器下游滤袋单元处理气量偏大,中游滤袋单元处理气量较小,最大流量与最小流量偏差为22.3%;靠近除尘器进口处灰斗内存在气流回流特性,易造成粉尘的二次附着现象.  相似文献   

19.
The chemical recycling of poly(lactic acid) (PLA) to its monomer is crucial to reduce both the consumption of renewable resources for the monomer synthesis and the environmental impact related to its production and disposal. In particular, the production of lactic acid from PLA wastes, rather than from virgin raw materials, it is also possible to achieve considerable primary energy savings. The focus of this work is to analyse deeply the PLA hydrolytic decomposition by means of a kinetic model based on two reactions mechanism. To this end, new experimental data have been gathered in order to investigate a wider temperature range (from 140 to 180 °C) and to extend the water/PLA ratio up to 50 % of PLA by weight. The reported results clearly highlight that more than 95 % of PLA is hydrolyzed to water-soluble lactic acid within 120 min, when it is hydrolyzed within 160–180 °C. Furthermore, the kinetic constant is highly influenced by reaction temperature. The proposed “two reactions” kinetic mechanism complies satisfactorily with the experimental data under analysis.  相似文献   

20.
The effects of temperature on the release of chemical components of six solid organic materials under conditions of oversaturation were investigated in this paper. The six materials were peat moss (PM), weathered coals (WC), charred rice husks (CRH), sawdust (Sd), turfgrass clippings (TC), and chicken manure (CM). Significant differences were observed in the available nitrogen and phosphorus content of the aqueous extracts of organic materials at different temperatures. The available nitrogen content in aqueous extracts of PM and WC at 25 °C was higher than that registered at 15 °C and 35 °C. Available nitrogen content in the aqueous extracts of CRH, Sd, TC, and WC at 35 °C was higher than at 15 °C and 25 °C. The available phosphorus content in the aqueous extracts of organic materials at 35 °C was higher than that available at 15 °C and 25 °C, with the exception of Sd. In addition, the release of available phosphorus in the aqueous solution of organic materials at different temperatures varied constantly for 108 h. The release of potassium (K+) and sodium (Na+) ions in the aqueous extracts of organic materials was basically steady over time, with the exception of CM. High temperature (35 °C) may significantly hasten the release of K+ from organic substrates (except for WC) with low temperatures significantly inhibiting release of K+ in Sd and CRH. High temperatures (35 °C) might significantly facilitate the release of Na+ in CM and TC. However, no significant differences were manifested in the release of Na+ from organic substrates at different temperatures, with the exception of CM and TC. Moreover, no significant differences were observed in the release of calcium, magnesium and iron ions with time, nor were there any significant differences in the contents of iron ions in the aqueous extracts of organic materials at different temperatures. The results indicate that multiple mediums should be pretreated in water for a week before being used for planting. They should be used when all mineral elements of organic materials are steady and ignoring the effect of organic mediums.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号