首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemosphere》2013,90(11):1450-1456
Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III) = 1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe2O3) and iron silicate composite ((Mg, Fe)SiO3) existed on Fe-WR, while clinoferrosilite (FeSiO3) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H2O2 system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (kobs) for cyanide removal were 0.49 (±0.081) h−1. Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H2O2.  相似文献   

2.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

3.
Hou MF  Liao L  Zhang WD  Tang XY  Wan HF  Yin GC 《Chemosphere》2011,83(9):1279-1283
Degradation of rhodamine B by Fe(0)-based Fenton process with H2O2 was investigated. The effects of H2O2 dose, Fe(0) dose, initial concentration of rhodamine B and initial pH value on the degradation of rhodamine B were examined. The results showed that the degradation and mineralization of rhodamine B occurred with low dose of H2O2 and Fe(0). The intermediates of rhodamine B were analyzed with UV-Vis spectrophotometry and ion chromatography and the mechanism of oxidative degradation of rhodamine B was also discussed. The reactive oxygen species (·OH) produced in Fe(0)-based Fenton process with H2O2 is the key to the degradation of rhodamine B by ways of N-de-ethylation, chromophore cleavage, ring-opening and mineralization.  相似文献   

4.
采用改性矿物吸附法和O3氧化法对某制药厂维生素B12废水进行脱色处理。以废水色度去除率大于50%为目的,通过实验确定改性矿物吸附法和O3氧化法处理维生素B12废水的最佳工艺条件:废水的pH为3.00,有机化膨润土的投加量为5 g/L,PAC的投加量为6 g/L,投加有机化膨润土后搅拌时间为30 min时,废水的色度去除率可达到51.3%,处理成本为12.85元/t。O3氧化法的最佳条件:废水的pH保持不变,O3流量为5 g/h,反应时间为2 min,废水的色度去除率可达到68.8%,处理成本为0.96元/t。对比这2种方法,O3氧化法处理该废水成本更低、效率更高,并且能提高废水的可生化性以便后续处理。  相似文献   

5.
Extensive production and application of γ-Fe2O3 magnetic nanoparticles (MNPs) has increased their potential risk on environment and human health. This report illustrates a genetic impact of γ-Fe2O3 magnetic nanoparticles (MNPs) on Escherichia coli (E. coli). After 3000-generation incubation with MNPs addition, obvious genomic variations were revealed by using repetitive extragenic palindromic PCR (rep-PCR) DNA fingerprint technique. The physicochemical interactions between MNPs and bacteria could be responsible for such genomic responses. It was revealed that Fe3+ concentration increased in the medium. Transmission electronic microscopy (TEM) and flow cytometry (FCM) analysis consistently demonstrated the occurrences of adsorption and membranes-internalization of MNPs outside and inside cells. Both increased Fe3+ ion and the uptake of MNPs facilitated Fe binding with proteins and DNA strands, resulting in enhancing the mutation frequency of E. coli. Our results would be of great help to assessing the potential impact of MNPs on human and environment.  相似文献   

6.
采用O3/H2O2法对嘧啶废水进行处理,考察了不同反应条件对嘧啶和COD去除率的影响,并对O3/H2O2降解嘧啶的反应机制和动力学进行了初步探讨.实验结果表明,在pH值为11,反应时间为70 min,O3流量为4g/h,H2O2投加量为50 mmol/L的条件下,废水的嘧啶和COD的去除率分别达到86.46%和74.9...  相似文献   

7.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   

8.
微波辐射Bi2O3/沸石-H2O2体系降解废水中的硝基苯   总被引:2,自引:1,他引:1  
研究了微波辐射下,以负载于沸石上的三氧化二铋为催化剂,以双氧水为氧化剂的催化氧化体系处理硝基苯工艺。通过单因素实验法,从反应催化剂负载量、pH、双氧水用量、微波功率、反应时间、催化剂用量等方面初步考察了硝基苯在该体系中的催化氧化效果。在氧化铋负载量3%(质量比),pH=2,2 mL 30%双氧水,火力为中火,催化剂投加量为0.7 g,反应2 min,对降解过程所得的中间产物和终产物进行了分析。结果表明,该体系对硝基苯的去除率能够达到99.2%,COD去除率为73.91%。  相似文献   

9.
采用臭氧辅助光芬顿法处理电镀添加剂生产废水,考察双氧水、FeSO4·7H2O、pH和反应时间等因素对废水COD和UV254去除的影响。实验结果表明,pH=4,臭氧通入量为0.25 g,双氧水的投加量93.3 mL/L,FeSO4·7H2O投加量为5.3 g/L,最佳反应时间为30 min,COD和UV254去除率分别达到92.64%和87.95%。这表明,臭氧辅助光芬顿法对电镀添加剂生产废水处理效果显著,处理时间大大减少。  相似文献   

10.
The effect of elevated CO2 and O3 on apparent quantum yield (?), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO2 alone did not affect ? or Pmax, and increased Jmax in the O3-sensitive, but not in the O3-tolerant clone. Elevated O3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O3 increased through time. Significant interaction effect, whereby the negative impact of elevated O3 was exaggerated by elevated CO2 was seen in Chl, N and Jmax, and occurred in both O3-tolerant and O3-sensitive clones. The clonal differences in the level of CO2 × O3 interaction suggest a relationship between photosynthetic acclimation and background O3 concentration.  相似文献   

11.
改性花生壳对Cd(Ⅱ)和Pb(Ⅱ)的吸附机理   总被引:1,自引:0,他引:1  
以前期制得改性块状花生壳为对象,测定改性花生壳等电点,考察离子强度对改性花生壳吸附Cd2+和Pb2+的影响、吸附前后吸附质溶液pH变化情况及蒸馏水、NaCl、HNO3、柠檬酸和EDTA 5种解吸液对Cd2+和Pb2+的解吸效果,并通过X-射线光电子能谱仪和傅里叶变换红外光谱仪对吸附前后的改性花生壳进行表征,推测并证实了改性花生壳对Cd2+和Pb2+可能的吸附机理。结果表明,改性花生壳对Cd2+和Pb2+可能的吸附机理是:Cd2+是通过外层络合、离子交换和内层络合的联合作用被吸附的;Pb2+主要是与改性花生壳上的O、N等活性基团发生内层络合;此外,改性花生壳表面生成的二氧化锰对Cd2+和Pb2+的吸附也起到一定的作用。  相似文献   

12.
Background, aim, and scope  The pulp and paper industry is the sixth largest polluter discharging a variety of gaseous, liquid, and solid wastes into the environment. Effluents from bleached Kraft mill effluents (BKME) are polluting waters to a great extent These effluents cause considerable damage to the receiving waters if discharged untreated since they have high levels of biological oxygen demand (BOD), chemical oxygen demand (COD), chlorinated compounds (measured as AOX), suspended solids (mainly fibers), fatty acids, tannins, resin acids, lignin and its derivatives, sulfur and sulfur compounds, etc. This study aimed to remove adsorbed organic halogen (AOX), total nitrogen, and lignin-degrading products in the wastewater (4,500 m3/h) from the paper mill in the pulp and paper industry, which is discharged to sea from a plant located in western Turkey. Materials and methods  The photocatalytic degradation of AOX, total nitrogen, and chlorinated lignin in BKME have been investigated in different parameters, such as time, H2O2 and TiO2 concentration. In addition, for investigating the effect of chlorine on the removal of lignin, pure lignin solution was prepared in equal amounts to chlorinated lignin degradation products found in BKME. The same experiments were conducted for this solution. Experiments were carried out in photocatalytic reactor made of Pyrex glass. The mercury lamp was used as a radiation source. All irradiation was carried out under constant stirring. The existence of dissolved O2 is an important factor which increases the photocatalytic degradation. Hence, we used an air pump for the aeration of the wastewater solutions. The temperature of the wastewater was controlled and adjusted to 25°C by thermostat pump in conjunction with a cooler. At the end of all experiments, AOX, total nitrogen and lignin concentrations were analyzed according to standard methods. All experiments were performed in duplicate and average values were used. Results and discussion  When the effect of H2O2 and time were investigated, it was observed that the AOX concentration increased from 3.0 to 11.0 mg/L by only UV. However, when H2O2 was added, AOX concentration decreased from approximately 3.0 to 0.0 mg/L. The optimal conditions for the removal of AOX appear to be an initial H2O2 concentration of 20.0 mL/L and reaction time of 50 min. In addition, at the same experiment conditions, it was seen that the total nitrogen concentration decreased from 23.0 to 15.0 mg/L by only UV and by increasing H2O2 concentration, the concentration of 20.0 mL/L H2O2 appears to be optimal (9.0 mg/L). The AOX, total nitrogen and lignin degradation products and pure lignin go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. The kinetics for the degradation of AOX, total nitrogen and lignin degradation products followed a pseudo-first order law with respect to the products, and the degradation rates (min−1) for the UV/TiO2/H2O2 system were higher than that of the corresponding values for the UV/H2O2 system. Conclusions  The AOX, total nitrogen and lignin concentration go through a minimum when the concentration of H2O2 and TiO2 increases at constant pH and UV intensity. It was found that the UV/TiO2/H2O2 system has proved capable of the degradation of total nitrogen as well as chlorinated and degraded lignin in BKME. Recommendations and perspectives  The photocatalytic process can be considered a suitable alternative for the remove of some compounds from the BKME. Nevertheless, further studies should be carried out to confirm the practical feasibility of BKME. Another result obtained from the study is that pre-purification carried out with UV/TiO2/H2O2 photocatalytic process may constitute an important step for further purification processes such as adsorption, membrane processes, etc.  相似文献   

13.
微波辅助双氧水氧化降解水中磺胺二甲嘧啶   总被引:1,自引:0,他引:1  
赵方  张从良  王岩 《环境工程学报》2012,6(11):4074-4078
采用微波辐照技术辅助双氧水氧化降解水中磺胺二甲嘧啶(SM2),研究了微波辅助双氧水氧化降解水中SM2的影响因素。结果表明,单纯使用微波辐照并不能显著降解SM2,而微波辐照可显著促进双氧水对SM2的氧化作用,提高SM2的降解率。在初始浓度为50 mg/L,微波功率为900 W,加入0.25 mL质量分数为30%的双氧水,pH值为4的条件下辐照6 min,SM2的降解率可达96.5%,COD去除率为72%。  相似文献   

14.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

15.
为研究建筑废物红砖和工业废物煤渣用作人工湿地脱氮基质的可行性,分别通过静态吸附实验和动态NH4+-N去除效果实验进行考察。结果表明,红砖和煤渣对NH4+-N最大静态吸附量分别为0.2533 mg/g和0.0533 mg/g,其吸附等温曲线均符合Freundlich型吸附方程,吸附常数分别为0.0419和0.0091;红砖煤渣组合对污水中NH4+-N平均动态脱除率达到41.18%,高于红砖的37.63%和煤渣的30.92%。  相似文献   

16.
17.
含聚丙烯酰胺采油污水的有效处理是近年来困扰油田三次采油生产的一个难题。研究采用移动床生物膜技术与O3/UV/H2O2高级氧化技术的组合方法来处理含聚丙烯酰胺采油污水。实验结果表明,移动床生物膜技术可以有效去除污水中的石油类有机物,但对聚丙烯酰胺几乎无效果。O3/UV/H2O2高级氧化技术可以降解污水中的聚丙烯酰胺。组合方法处理后的含聚丙烯酰胺采油污水水质可以达到污水综合排放标准中的一级要求。  相似文献   

18.
以工业水玻璃为硅源,采用六甲基二硅胺烷(HMDZ)作为改性剂,掺杂纳米级Fe3O4,通过溶胶-凝胶、常压干燥技术,制备得到赋磁硅气凝胶吸附材料(MSA)。采用红外光谱(FTIR)、扫描电镜(SEM)、比表面分析(BET)及振动样品磁强计(VSM)等方法对其结构进行了表征,并对其吸附性能进行研究。结果表明,制得的赋磁硅气凝胶接触角在113°~116°之间,比表面积可达589.79 m2/g,密度约为0.192 g/cm3,饱和磁化强度约为0.44 emu/g,具有超顺磁性。赋磁硅气凝胶对疏水性有机物异狄氏剂表现出良好的吸附性能,符合Freundlich等温吸附模型,KF为42.91;吸附动力学符合准二级动力学模型,吸附速率常数为0.0341 g/(mg.min)。  相似文献   

19.
Wang W  Qu Y  Yang B  Liu X  Su W 《Chemosphere》2012,86(4):376-382
Pyrite is a common mineral at many mining sites. In this study, the mineral pyrite was studied as a Fenton-like reagent for environmental concerns. We selected lactate as a model target molecule to evaluate the Fenton-like catalytic efficiency of pyrite upon organic oxidation. A complete set of control experiments in both aerobic and anaerobic atmospheres unequivocally established that the pyrite in aqueous solution could spontaneously in situ generate OH and H2O2, serving as a Fenton-like reagent to catalyze the oxidation of lactate to pyruvate with no need for additional H2O2. We called it the pyrite-only Fenton-like (PF) reagent. Monitoring concentration changes of lactate and pyruvate with the time indicated that the pyrite mediated the favorable pyruvate formation at pH 4.5, 60 °C, under air atmosphere. The PF reaction could be stimulated by visible light illumination. Under the optimum conditions, up to 50% of lactate was degraded within 10 d. The results suggest that pyrite and its Fenton-like processes may be potentially practical in wastewater treatment.  相似文献   

20.
Fe-Co3O4 thin film with different amounts of Fe have been used for the electro-oxidation of phenol in alkaline medium at room temperature. The electrodes were prepared by coating stainless steel supports with successive layers of the oxides, obtained by thermal decomposition at 673 K. The electrolysis was carried out at constant potential and the phenol disappearance, during the electrolysis, was monitored by UV-Vis absorbance measurements between 250 and 500 nm. After 3 h of electrolysis, the intermediates were identified by comparing the HPLC data and UV-Vis spectra to those from pure standards. The results indicate that the same oxidation products are formed on the different prepared electrodes, namely the decomposition products of phenol such as benzoquinone, hydroquinone and cathecol in basic medium. Simulated results show clearly the decrease of the amount of phenolic species with the electrolysis time. An enhancement of the phenol removal is observed with the presence of iron in the oxide. Under the operating conditions, around 30% of the initial phenol has been removed at ca. 3 h and the complete degradation is obtained after 54 h of electrolysis, when Fe-Co3O4 thin film with 10% of Fe is used as anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号