首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentation is emerging as a key issue in sustainable reservoir management. One approach to controlling reservoir sedimentation is to trap sediment in hydraulic structures upstream of the reservoir. In the 1,163‐km2 catchment of the Dahan River (Taiwan) over 120 “sabo” dams were built to reduce sediment yield to Shihmen Reservoir. Built in 1963 for water supply, Shihmen has lost over 40% of its 290‐Mm3 storage capacity to sedimentation. Most of these upstream structures were small, but three had capacities >9 Mm3. Field measurements and historical data from the Water Resources Agency show most smaller dams had filled with sediment by 1976. The three largest were full or nearly so by 2007, when one (Barlin Dam) failed, releasing a pulse of 7.5 Mm3, most of its 10.4 Mm3 stored sediment downstream. The Central Range of Taiwan is rapidly eroding (denudation rates 3‐6 mm/yr), so geologically high loads make sediment problems manifest sooner. Even in other environments, however, eventually small dams built upstream of large reservoirs are likely to fill themselves, creating multiple small sediment‐filled reservoirs, some located in sites inaccessible to mechanical removal. Our analysis suggests sabo dams do not offer a long‐term basis for controlling reservoir sedimentation in such a high‐sediment yield environment. Sustainable solutions must somehow pass sediment downstream, as would be accomplished by a sediment bypass around Shihmen Reservoir, as now being studied.  相似文献   

2.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

3.
ABSTRACT: A new method has been developed for estimating future reservoir storage capacities, allowing for sediment deposition and compaction. Reservoir sedimentation surveys for 117 reservoirs, conducted by the Illinois State Water Survey over the past 60 years, were used to determine regional constants K to represent the severity of sediment deposition in the reservoirs. More than half of the 82 water supply reservoirs investigated had records of reservoir sedimentation surveys, and their K values were calculated by using data from those sediment surveys. The average K values of the remaining non-surveyed water supply reservoirs were estimated from the regional distribution of the K values. Other important factors considered in the estimation of future reservoir storage capacities are the trap efficiency of the reservoirs and the variation of density of sediment deposits due to compaction. The model can also be used for analyzing the economics of alternative sites and of design features that can be incorporated in dams for reducing reservoir sedimentation.  相似文献   

4.
Management of Sedimentation in Tropical Watersheds   总被引:2,自引:0,他引:2  
/ The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards reducing sedimentation. When sedimentation of reservoirs is the key issue, sediment budgets must focus especially on channel transport rates and sediment delivery from hillsides. Sediment budgets are especially critical for tropical areas where project funds and technical help are limited. Once sediment budgets are available, watershed managers will be able to direct erosion control programs towards locations where they will be most effective. KEY WORDS: Tropical watersheds; Sedimentation; Reservoirs; Erosion control  相似文献   

5.
Forty‐five flood control reservoirs, authorized in the Watershed Protection and Flood Prevention Act 1954, were installed by United States Department of Agriculture (USDA) between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost sediment and flood storage capacity due to sedimentation, with rates dependent on upstream land use and climate variability. In this study, sedimentation rates for 12 reservoirs representing three major land use categories within LWREW were measured based on bathymetric surveys that used acoustic profiling system. Physiographic and climate attributes of drainage area of surveyed reservoirs were extracted from publicly available data sources including topographic maps, digital elevation models, USDA Natural Resource Conservation Service soils, and weather station databases. Correlation, principal component analysis, and stepwise regression were utilized to analyze the relationship between normalized reservoir sedimentation rates (ReSRa) and the drainage area characteristics to determine the major variables controlling sedimentation within the LWREW. Percent of drainage area with extreme slopes, saturated hydraulic conductivity, and maximum daily rainfall event recorded in spring explained most of the variability in ReSRa. It was also found that percent reduction in reservoir surface area can be used as a surrogate for estimating ReSRa. The implications of the results are discussed.  相似文献   

6.
Recognition of the threat to the sustainable use of the earth's resources posed by soil erosion and associated off-site sedimentation has generated an increasing need for reliable information on global rates of soil loss. Existing methods of assessing rates of soil loss across large areas possess many limitations and there is a need to explore alternative approaches to characterizing land surface erosion at the regional and global scale. The downcore profiles of 137Cs activity available for numerous lakes and reservoirs located in different areas of the world can be used to provide information on land surface erosion within the upstream catchments. The rate of decline of 137Cs activity toward the surface of the sediment deposited in a lake or reservoir can be used to estimate the rate of surface lowering associated with eroding areas within the upstream catchment, and the concentration of 137Cs in recently deposited sediment provides a basis for estimating the relative importance of surface and channel, gully, and/or subsurface erosion as a source of the deposited sediment. The approach has been tested using 137Cs data from several lakes and reservoirs in southern England and China, spanning a wide range of specific suspended sediment yield. The results obtained are consistent with other independent evidence of erosion rates and sediment sources within the lake and reservoir catchments and confirm the validity of the overall approach. The approach appears to offer valuable potential for characterizing land surface erosion, particularly in terms of its ability to provide information on the rate of surface lowering associated with the eroding areas, rather than an average rate of lowering for the entire catchment surface.  相似文献   

7.
Economics of reservoir sedimentation and sustainable management of dams   总被引:2,自引:0,他引:2  
Accepted practice has been to design and operate reservoirs to fill with sediment, generating benefits from remaining storage over a finite period of time. The consequences of sedimentation and project abandonment are left to the future. This 'future' has already arrived for many existing reservoirs and most others will eventually experience a similar fate, thereby imposing substantial costs on society. Such costs could be avoided if sedimentation was minimized and dams were allowed to live forever. The fact that the world's inventory of suitable reservoir sites is limited provides an additional reason for encouraging the sustainable management of dams. This paper provides a framework for assessing the economic feasibility of sediment management strategies that would allow the life of dams to be prolonged indefinitely. Even if reduced accumulation or removal of sediment is technically possible, its economic viability is likely to depend on physical, hydrological and financial parameters. The model presented incorporates such factors and allows a characterization of conditions under which sustainable management would be desirable. The empirical implementation of the model draws upon the substantial amount of technical information available. We analyze the sustainability of reservoirs, with a focus on the trade-off between such sustainability and the short to medium term benefits which a reservoir is expected to produce. The results show that, for a very wide range of realistic parameter values, sustainable management of reservoirs is economically more desirable than the prevailing practice of forcing a finite reservoir life through excessive sediment accumulation.  相似文献   

8.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

9.
ABSTRACT: This research examines what is hypothesized as a critical factor in reservoir sedimentation - precipitation variability. The coefficient of variation for annual precipitation, computed for the period relating to sedimentation, is regressed against sediment yields for several reservoirs over a wide range of environmental settings. A significant linear relationship results, and when precipitation variability is combined with several additional variables available from reservoir summary sheets, almost 83% of the total variation in sediment yield is accounted for. It is suggested that the coefficient of variation for annual precipitation fulfills a direct process role when modeling reservoir sedimentation much more effectively than annual precipitation or runoff.  相似文献   

10.
ABSTRACT: The total suspended sediment loads of four north Mississippi reservoirs were determined from measurements of concentrations of suspended sediment in a vertical profile at several locations on each reservoir made during the year. These data were combined with the stage-height and known stage-volume relationships for each reservoir in a numerical integration to determine the total suspended sediment in the water body. Total suspended sediments were estimated using the product of the suspended sediment concentration in the surface water by the appropriate reservoir volume. The averaged ratios of the estimated to measured suspended sediment loads for each reservoir exceeded 0.90. Since the concentration of suspended sediments in surface waters of north Mississippi reservoirs has been shown as highly correlated with spectral reflectance, estimating the total suspended sediment of these reservoirs using remotely sensed spectral reflectance data is possible.  相似文献   

11.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

12.
ABSTRACT: An optimal control methodology and computational model are developed to evaluate multi‐reservoir release schedules that minimize sediment scour and deposition in rivers and reservoirs. The sedimentation problem is formulated within a discrete‐time optimal control framework in which reservoir releases represent control variables and reservoir bed elevations, storage levels, and river bed elevations represent state variables. Constraints imposed on reservoir storage levels and releases are accommodated using a penalty function method. The optimal control model consists of two interfaced components: a one‐dimensional finite‐difference simulation module used to evaluate flow hydraulics and sediment transport dynamics, and a successive approximation linear quadratic regulator (SALQR) optimization algorithm used to update reservoir release policies and solve the augmented control problem. Hypothetical two‐reservoir and five‐reservoir networks are used to demonstrate the methodology and its capabilities, which is a vital phase towards the development of a more robust optimal control model and application to an existing multiple‐reservoir river network.  相似文献   

13.
14.
ABSTRACT: Carbon content was measured in sediments deposited in 58 small reservoirs across the United States. Reservoirs varied from 0.2 to 4000 km2 in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 ± 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils (0–10 cm) in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3700 gC m-2yr-1, with a mean of 675 ± 739 gC m-2yr-1. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink for organic carbon.  相似文献   

15.
Control of sedimentation in large reservoirs requires soil conservation at the catchment scale. In large, heterogeneous catchments, soil conservation planning needs to be based on sound information, and set within the framework of a sediment budget to ensure that all of the potentially significant sources and sinks are considered. The major sources of sediment reaching the reservoir, Lake Argyle, in tropical northwestern Australia, have been determined by combining measured sediment fluxes in rivers with spatial tracer-based estimates of proportional contributions from tributaries of the main stream entering the lake, the Ord River. The spatial tracers used are mineral particle magnetics, the strontium isotopic ratio, and the neodymium isotopic ratio. Fallout of 137Cs has been used to estimate the proportion of the sediment in Lake Argyle eroded from surface soils by sheet and rill erosion, and, by difference, the proportion eroded from subsurface soils by gully and channel erosion. About 96% of the sediment in the reservoir has come from less than 10% of the catchment, in the area of highly erodible soils formed on Cambrian-age sedimentary rocks. About 80% of the sediment in the reservoir has come from gully and channel erosion. A major catchment revegetation program, designed to slow sedimentation in the reservoir, appears to have had little effect because it did not target gullies, the major source of sediment. Had knowledge of the sediment budget been available before the revegetation program was designed, an entirely different approach would have been taken.  相似文献   

16.
Abstract: A present and future challenge for water resources engineers is to extend the useful life of our dams and reservoirs. Ongoing reservoir sedimentation in impoundments must be addressed; sedimentation in many reservoirs already limits project benefits and effective project life. Sustainability requires that incoming sediment be moved downstream past the impounding dam. We use Lewis and Clark Lake, the most downstream of the six Missouri River main stem reservoirs, to demonstrate how a reservoir in advanced stages of its project life could be converted to a sustainable system with local benefits exceeding costs by a factor of 1.5. Full consideration of benefits would further enhance project justification. The proposed strategy involves four phases that will take about 50 years to complete. Cost estimates for this potential project range from the quantitative to the plausible, but it is clear that the results justify a full engineering, environmental, and economic study of this model project. If implemented, the project will create scientific knowledge and develop technologies useful for achieving sustainability at many other reservoirs in the Mississippi River basin and beyond.  相似文献   

17.
ABSTRACT: The proposed removal of Ballville Dam was assessed by (1) using a new Geographic Information Systems (GIS) based method for calculating reservoir sediment storage, (2) evaluating sediment properties and contamination from core data, and (3) assessing downstream impacts from sediment routing calculations. A 1903 (pre‐dam) map was manipulated using GIS to recreate the reservoir bathymetry at time of dam construction and used in combination with a detailed 1993 bathymetric survey to calculate sediment volumes and thickness. Reservoir sediment properties and geochemistry were determined from 14 sediment vibracores. Annual sedimentation rates varied from 1.7 to 4.3 g/cm2/yr based on Cesium‐137 (137Cs) and Lead‐210 (210Pb) geochronology and dated flood layers. The pore fluid geochemistry (Ba, Co, Cu, Mn) of four cores showed surficial enrichments in Cu, while Co and Mn show secondary peaks within the sediments. GIS calculations showed that a designed channel through the former reservoir able to accommodate the 10 percent Probable Maximum Flood (PMF) would require removing approximately 0.35 million m3 of sediment (27 percent of the reservoir fill), either by dredging at a cost of up to $6.3 million or by releasing fine grained sediment downstream. A sediment routing model was applied for the critical 6 km downstream using four cross sections. The sediment routing model predicts that, for flows exceeding minimum Mean Daily Flow (1924 to 1998 data), greater than 90 percent of this sediment would be transported through downstream reaches into Lake Erie (Sandusky Bay).  相似文献   

18.
Reservoirs are important for various purposes including flood control, water supply, power generation, and recreation. The aging of America's reservoirs and progressive loss of water storage capacity resulting from ongoing sedimentation, coupled with increasing societal needs, will cause the social, economic, environmental, and political importance of reservoirs to continually increase. The short‐ and medium‐term (<50 years) environmental consequences of reservoir construction and operation are well known and include an altered flow regime, lost connectivity (longitudinal, floodplain), an altered sediment regime, substrate compositional change, and downstream channel degradation. In general, reservoir‐related changes have had adverse consequences for the natural ecosystem. Longer term (>50 years) environmental changes as reservoirs enter “old” age are less understood. Additional research is needed to help guide the future management of aging reservoir systems and support the difficult decisions that will have to be made. Important research directions include assessment of climate change effects on aging and determination of ecosystem response to ongoing aging and various management actions that may be taken with the intent of minimizing or reversing the physical effects of aging.  相似文献   

19.
We investigate stream response to the La Valle Dam removal and channel reconstruction by estimating channel hydraulic parameter values and changes in sedimentation within the reservoir. The designed channel reconstruction after the dam removal included placement of a riffle structure at the former dam site. Stream surveys undertaken in 1984 by Federal Emergency Management Agency and in 2001 by Doyle et al. were supplemented with surveys in 2009 and 2011 to study the effects of the instream structure. We created a model in HEC‐RAS IV and surface maps in Surfer© using the 1984, 2009, and 2011 surveys. The HEC‐RAS IV model for 2009 channel conditions indicates that the riffle structure decreases upstream channel shear stress and velocity, causing renewed deposition of sediment within the former reservoir. We estimate by 2009, 61% of former reservoir sediments were removed during dam removal and channel reconstruction. Between 2009 and 2011 renewed sedimentation within the former reservoir represented approximately 7.85% of the original reservoir volume. The HEC‐RAS IV models show the largest impacts of the dam and riffle structure occur at flood magnitudes at or below bankfull. Thus, the riffle and the dam similarly alter channel hydraulics and sediment transport. As such, our models indicate that the La Valle Dam project was a dam replacement rather than a removal. Our results confirm that channel reconstruction method can alter channel hydraulics, geomorphology, and sediment mobility.  相似文献   

20.
ABSTRACT. An investigation of the hydraulics of gorge-type reservoirs was conducted with scale models. Reservoir shapes were moulded within a large basin. Water was circulated using a centrifugal pump-motor unit and uniform sediment (specific gravity 2.65) with mean diameters of 0.20 mm and 0.60 mm were utilized. Observations were made to study sedimentation patterns from the commencement of sediment inflow until the final stage of a fully silted reservoir. In particular, the mode of deposition of the sediment beds, the mechanics of transportation and sediment bed slopes were investigated. These aspects of reservoir siltation were examined in relation to the factors which influence it, which included sediment characteristics and flow parameters. Bed slopes and flow depths were analyzed by various methods; the Kalinske equation in conjunction with the Manning and Einstein-Barbarossa relations as proposed by Doland-Chow produced the best results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号