首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to moderate concentrations (90-500 microg SO(2) m(-3)) of SO(2) for 5-30 days caused a decrease in the photosynthetic rate. Only the lowest concentration (30 microg SO(2) m(-3)) increased photosynthesis. There was hardly any recovery in photosynthesis after the exposure. All exposure concentrations increased dark respiration. However, the lowest concentration had the smallest effect. Exposure to high concentration (2320 microg SO(2) m(-3)) of SO(2) for 5 h caused a strong decrease in the photosynthetic rate but there was a complete recovery within 2 weeks.  相似文献   

2.
Oats (Avena sativa L. cv Titus) were exposed to low concentrations of O3 in an assimilation chamber system. Net photosynthesis (net CO2 uptake), measured before and after O3 fumigation, showed significantly different responses for leaves of different age. The oldest active leaf was the most sensitive to O3. Net photosynthesis was depressed after 2 h with 0.075 ppm (150 microg m(-3)) O3. For leaves exposed to 0.150 ppm (300 microg m(-3)) O3 for 2 h, net photosynthesis was reduced significantly for 4 h, after which recovery occurred, nearly reaching the preexposure level 19 h after the exposure. Dark respiration was initially more than doubled after exposure to 0.130 ppm (260 microg m(-3)) O3. There was no visible injury after any of the experiments. The results indicate that O3 may cause crop losses through effects on photosynthesis even in Scandinavia, where a typical O3 episode lasts 1 to 2 h, and the concentration seldom exceeds 0.150 ppm.  相似文献   

3.
Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31 August) varied from 25 in 1984 to 98 in 1989. However, only 7.9% of ozone days during the 6 years examined were concurrent with weather conditions suitable for fungal infections. It is concluded that the majority of leaf infections in the field happens under low-level concentrations of photooxidants.  相似文献   

4.
Two clones of Norway spruce were exposed to elevated ozone levels (100 microg m(-3) with episodes of 130-360 microg m(-3)) in combination with acidic mist (pH 3.0) for two vegetation periods. The plants did not exhibit any visible injury, but levels of several amino acids and polyamines were altered in comparison with control plants (50 microg m(-3) ozone, mist of pH 5.6), the changes being pronounced in clone 14. Total free amino acids as well as methionine titers were increased in clone 14. Asparagine was significantly increased in clone 11 and less so in clone 14. Arginine, which comprised more than 50% of the free amino acids in spruce needles, was not changed by the exposure regime applied. Reduced glutathione was significantly increased in all clones/soil/needle age combinations (average increase 50%). Free soluble putrescine was enhanced by 50-200% in clone 14, but remained unchanged in clone 11. Conjugated putrescine was significantly, and conjugated spermidime was slightly, increased in both clones, whereas other polyamines did not responde to the treatment.  相似文献   

5.
Rooted cuttings of poplar (Populus nigra) and seedlings of beech (Fagus sylvatica) were exposed to ozone in open-top chambers for one growing season. Three treatments were applied: charcoal-filtered (CF), non-filtered (NF) and non-filtered air plus 30 ppb (nl l(-1)) ozone (NF+). Extra ozone was only added on clear days, from 09:00 until 17:00-20:00. The AOT40s (accumulated exposure over a threshold of 40 ppb), calculated from April to September were 4055 ppb.h for the NF and 8880 ppb.h for the NF+ treatments. For poplar ozone exposure caused highly significant reductions in growth rate, light-saturated net CO(2) assimilation rate, stomatal conductance, F(v)/F(m) and chlorophyll content. The largest effects were observed in August at which time ozone concentrations were elevated. A reduction was noticed in new leaf production, while accelerated ageing and visible damage to leaves caused high leaf losses. For beech the responses were similar but less pronounced: ozone exposure resulted in non-significant growth reductions, slight changes in light-saturated photosynthesis and accelerated leaf abscission. The chlorophyll content of beech leaves was not affected by the ozone treatments. The results confirmed previous observations that fast-growing tree species, such as most poplar species and hybrids, are more sensitive and responsive to tropospheric ozone than slower-growing species, such as beech. The growth reductions observed and reported here for beech were within the range of those reported in relationship to the AOT40 (accumulated exposure over a threshold of 40 ppb) critical level for ozone.  相似文献   

6.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

7.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

8.
Four clones of 3-year-old Norway spruce (Picea abies (L.) Karst.), grown on two soils, were from July 1986 to September 1987 exposed to ozone fumigation (50 microg m(-3) as a control, 100 microg m(-3) plus peaks between 130 and 360 microg m(-3) as treatment) and acid mist of pH 3.0 (versus mist pH 5.6 in the control). Climatic conditions, identical for both control and treatment, followed a diurnal and seasonal pattern characteristic of medium high altitudes of the Bavarian Forest, an area affected by the new-type forest decline. Gas-exchange measurements were carried out on the plants from December 1986 until the end of the 14-month's exposure using a series of climate-controlled minicuvettes. ANOVA of the four clones investigated towards the end of the experiment gave hints of a treatment-related depression of the photosynthetic capacity of the previous year's needles (age-class 1986). Within this age-class only one of the clones (11) showed a significant treatment effect, indicating an age-class dependence and a genetic influence of the treatment-related depression of the photosynthetic capacity. The current year's flush was not impaired through the ozone and acid mist exposure. Analysis also revealed clear effects of soil, clone and needle age on photosynthetic parameters.  相似文献   

9.
White oak (Quercus alba L.) seedlings were exposed to charcoal-filtered air or to above-ambient ozone concentrations for 19-20 weeks during each of two growing seasons in continuously stirred tank reactors in greenhouses. Ozone treatments were 0.15 ppm (300 microg m(-3)) for 8 h day(-1), 3 days week(-1) in 1988, and continuous 15% above ambient in 1989. The seedlings were grown in forest soil watered twice weekly with simulated rain of pH 5.2. Responses of net photosynthesis to photosynthetically active radiation and intercellular CO(2) concentration were measured three times each year. There were no significant differences in light-saturated net photosynthesis or stomatal conductance, dark respiration, quantum or carboxylation efficiencies, and light or CO(2) compensation points on any date between control and ozone-exposed seedlings.  相似文献   

10.
Effects of ozone impact on gas exchange and chlorophyll fluorescence of juvenile birch (Betula pendula) stems and leaves were investigated. Significant differences in the response of leaves and stems to ozone were found. In leaves, O3 exposure led to a significant decline in photosynthetic rates, whereas stems revealed an increased dark respiration and a concomitant increase in corticular photosynthesis. In contrast to birch leaves, corticular photosynthesis appeared to support the carbon balance of stems or even of the whole-tree under O3 stress. The differences in the ozone-response between leaves and stems were found to be related to ozone uptake rates, and thus to inherent differences in leaf and stem O3 conductance.  相似文献   

11.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

12.
The nutrient contents of an acid and a calcareous soil, as well as the foliar contents of four clones of Norway spruce grown on these soils, were evaluated during a 14-month exposure to low level ozone (100 microg m(-3) + peaks between 130 and 360 microg m(-3)) plus acid mist (pH 3.0). Whilst distinct differences could be established between and within clones depending on soil types and genotype, only few pollutant-related effects were observed. Leaching losses from foliage were generally low compared to field studies. The data obtained with young trees in an artificial environment do not support the hypothesis that enhanced leaching from foliage may contribute to nutrient deficiencies in mature stands of Norway spruce.  相似文献   

13.
Ozone measurements (daily maximum values) from the Aerometric Information Retrieval System database are analyzed for selected sites, during 1980 to 1988, in southeastern USA. Frequency distributions, for most sites during most years, show a typical bell-shaped curve with the higher frequency around the yearly daily maximum ozone mean of about 100 to about 110 microg m(-3) (50-55 ppbv). Abnormal years in ozone concentration may skew the distribution as the mean shifts. A correlation of daily maximum ozone concentrations above 140 microg m(-3) (70 ppbv) between sites shows a division between the sites in the northern protion of the region and those in the southern portion of the region. Variations in ozone levels are well correlated over distances of several hundred kilometers, suggesting that high values are associated with synoptic scale episodes. An ozone exposure analysis also shows higher ozone exposures (250-300 ppm days) in the northerly sites as compared to the southerly sites (150-170 ppm days).  相似文献   

14.
Four-year-old clonal Picea abies (L.) Karst. plants were treated with ozone (100 microm(-3) plus peaks of 130 to 360 microm(-3)) and acid mist (pH 3.0) during two vegetation periods. Pulse labelling experiments on shoots were performed with [(35)S]methionine in the second year of exposure. Extraction of soluble needle proteins in citric acid buffer of pH 2.8 revealed protein patterns on SDS polyacrylamide gels that differed from those of control needles fumigated with ambient levels of ozone (50 microg m(-3)) and mist of pH 5.6. New proteins of MW 16000 and 32000 were synthesized only in ozone-exposed needles and could not be detected in the controls.  相似文献   

15.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone.  相似文献   

16.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

17.
Twenty-two week-old Pinus taeda L. (loblolly pine) seedlings of 30 open-pollinated and five full-sib families, representing a wide range in geographic origin, were grown in charcoal-filtered (CF) air or CF-air supplemented with 160 or 320 nl liter(-1) ozone for 8 h day(-1), 4 days week(-1), for 9 weeks. Visible foliar injury (banded chlorosis, tip burn and premature senescence) was apparent in many families after 3 weeks in 320 nl liter(-1) and 6 weeks in 160 nl liter(-1) ozone. Decreases in relative height and root collar diameter growth rates, total dry weight, root dry weight, shoot dry weight, and root/shoot ratios were evident after 9 weeks of treatment with both 160 and 320 nl liter(-1) ozone. For relative height growth rates, family differences in response to ozone were observed. By the study's end, net photosynthesis rates were 15% less for the 320 nl liter(-1) ozone treatment as compared to the CF-air treatment. Total soluble sugar and total starch content of roots were not changed after 9 weeks of ozone exposure.  相似文献   

18.
A fumigation experiment was performed in which six plant species representing the European flora were exposed to a range of DBP concentrations. Controlled amounts of DBP-saturated air were injected into the ingoing air-streams of plant fumigation chambers, maintaining constant concentrations there for a period of up to 76 days. The target concentrations were a control, 0.8, 1.5, 3.5, and 10.0 microg m(-3). The variation in sensitivity between plant species to atmospheric DBP was quantified on the basis of whole plant biomass in order to derive no-observed-effect-concentrations (NOECs). Significant dose-response relationships, based on realised concentrations, were thus derived using non-linear regression, resulting in NOECs of 0.51 microg m(-3) for Trifolium repens, 0.96 microg m(-3) for Brassica campestris, 1.87 microg m(-3) for Phaseolus vulgaris and 2.21 microg m(-3) for Plantago major. A significant effect was also observed for Holcus lanatus at 12.4 microg m(-3) DBP, but due to the variation at lower levels of DBP exposure, no dose-response relationship could be derived. No significant effect on growth of current year needles in Picea abies was observed, even at the highest level of DBP, 13.7 microg m(-3). Based on statistical extrapolation according to Aldenberg and Slob [Ecotox. Environ. Safety, 25 (1993) 48], an overall predicted no-effect concentration (PNEC) for the plant-atmosphere compartment of 0.33 microg m(-3) DBP was calculated. The PNEC was calculated using the mean and standard deviation of the NOEC for four of the tested species and an extrapolation factor. In addition to changes in leaf colour, leaf crinkling and growth reduction, a number of not quantified observations are described, indicating that DBP affects the physiology as well as the morphology of these species.  相似文献   

19.
Simultaneous measurements of gaseous hydrogen peroxide and ozone made in southern England are reported. The hydrogen peroxide measurements are the first reported for the United Kingdom and show clear diurnal trends and correlate with ozone measurements. Measurements were made during a photochemical episode when a peak hydrogen peroxide concentration of 2.5 microg m(-3) was recorded with a simultaneous peak of 168 microg m(-3) in the ozone concentration. From observations on the rate of decay in the measured concentrations, an evening-time deposition velocity of 0.28 cm s(-1) was derived for hydrogen peroxide.  相似文献   

20.
Young wheat plants were fumigated with 170 microg m(-3) ozone for 3 days, or with 210 microg m(-3) ozone for 7 days, for 7 hours a day. At the end of the fumigation period the plants were inoculated with brown rust (Puccinia recondita f. sp. tritici) uredospores. The development of new uredospore pustules on fumigated and control plants was evaluated as a measure of rust disease potential. The number of pustules on the ozone fumigated plants was greatly reduced in comparison with the number of plants treated with charcoal-filtered air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号