首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
络合沉淀—Fenton试剂氧化法处理高浓度含氰废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用络合沉淀—Fenton试剂氧化法处理高浓度含氰废水。实验结果表明,在初始废水p H为9、曝气时间为20 min、搅拌时间为20 min、Fe SO4溶液加入量为1.62 m L/L、搅拌转速为40 r/min的络合沉淀反应条件下,在絮凝阶段废水p H为8、n(H2O2)∶n(Fe2+)=20的Fenton试剂氧化反应条件下,处理初始CN-质量浓度为450~550 mg/L的高浓度含氰废水,总CN-去除率达99.9%以上,剩余CN-质量浓度小于0.02 mg/L,COD为50~70 mg/L,BOD5小于20 mg/L,浊度小于0.5 NTU,悬浮物质量浓度小于10 mg/L,满足GB 8978—1996《污水综合排放标准》的要求。  相似文献   

2.
混凝—催化氧化法处理丁苯橡胶生产废水   总被引:3,自引:0,他引:3  
郭青  赵旭涛  王维 《化工环保》2006,26(6):494-497
以聚合氯化铝(PAC)、阴离子聚丙烯酰胺(PAM)为混凝剂,以H2O2-O3为氧化剂,采用混凝-催化氧化法处理对丁苯橡胶生产废水。考察了混凝剂种类及其加入量、废水pH对混凝处理效果的影响,氧化剂及其加入量、反应时间和废水pH对COD去除率的影响。实验得出的最佳工艺条件:混凝实验,废水pH为7、PAC和PAM加入量为400mg/L和4mg/L;催化氧化实验,废水pH为7~8、H2O2加入量为200mg/L、H2O2与O3的质量比为0.5。处理后,废水COD从860mg/L降至145mg/L,COD去除率达83.1%,出水水质达到国家二级排放标准。  相似文献   

3.
均相Fenton氧化-混凝法强化处理印染废水   总被引:13,自引:2,他引:13  
采用均相Fenton氧化—混凝法对印染废水进行了强化处理。结果表明,该法特别适用于处理同时含有亲水性和疏水性染料的印染废水,处理过程充分发挥了均相Fenton氧化和混凝的协同作用,对废水中的水溶性有机物、胶粒和疏水性污染物均有较好的去除效果。在印染废水初始pH4.0左右,H2O2、FeSO4·7H2O和絮凝剂聚硅酸氯化铝(PASC)的加入量分别为3.6,1.8,8mL时,处理后废水的色度降到35,COD降到103mg/L,去除率分别高达95%和94.3%,脱色效果显著。  相似文献   

4.
Fenton混凝沉淀法处理高浓度焦化废水的研究   总被引:7,自引:0,他引:7  
对以H2O2为氧化剂,FeSO4.7H2O为催化剂的Fenton氧化法处理高浓度复杂焦化废水进行了系统研究,氧化处理后用氯化铁作为混凝剂,对COD、NH3-N、色度及浊度的去除率进行了考查。确定了氧化试验的影响因素和最佳混凝试验条件。结果表明:当pH值控制在3左右,反应时间为30 min,反应温度为80℃时,焦化废水COD,NH3-N,浊度和色度去除率分别达到了93.1%、96.2%、90.8%和90.2%。  相似文献   

5.
采用混凝—Fenton法深度处理维生素B12废水,考察各操作参数对COD和色度去除效果的影响。实验结果表明:当混凝pH 4.5、聚合硫酸铁加入量300 mg/L、氧化pH 4.0、H2O2加入量420 mg/L、FeSO4?7H2O加入量334 mg/L、Fenton反应时间3 h时,混凝—Fenton法对维生素B12废水的深度处理效果较好,总COD和总色度的去除率分别为62.1%和90.0%;与Fenton法相比,混凝—Fenton法COD和色度去除率的提高率分别为17.4%和13.8%,且药剂成本降低了21.6%。  相似文献   

6.
采用Fenton试剂强化微电解反应预处理难降解含氰农药废水.实验结果表明,在总反应时间为3.0 h、反应开始时加入1 mL/L H2O2、反应1.5 h后再加入3mL/L H2O2的条件下,出水COD为372.0 mg/L,COD去除率可达80.2%,出水p(CNˉ)为2.2 mg/L,色度为20倍,BOD5/COD为0.35,可实现处理效果与经济成本的最优化.采用紫外-可见光谱分析处理后废水,发现Fenton试剂强化微电解反应可破坏部分微电解作用难以降解的有机物,但对苯环的降解能力均有限.  相似文献   

7.
在旋转填充床(RPB)中,采用O3-Fenton氧化法深度处理实际彩涂废水。实验结果表明:在反应温度为25℃、气体流量为150 L/h、液体流量为30 L/h、初始p H为7、反应时间为5.0 min、Fe2+浓度为0.10 mmol/L、H2O2浓度为1.0 mmol/L、RPB转速为1 000 r/min的条件下,彩涂废水的COD去除率达到99.7%,比非超重力O3-Fenton体系的处理效果高出60.0百分点。表明超重力技术对O3-Fenton氧化法深度处理彩涂废水具有良好的强化效果。  相似文献   

8.
采用A/O—Fenton氧化—混凝组合工艺处理丁苯橡胶生产废水。试验结果表明:A/O工段中,在兼氧池HRT 8 h、好氧池HRT 16 h、好氧池MLSS 2 500~3 500 mg/L的优化参数下,平均COD,NH3-N,TP去除率分别为72.9%,96.2%,51.3%;Fenton氧化工段中,在30%(w)H2O2溶液加入量0.2%(φ)、n(H2O2)∶n(Fe SO4)=2∶1、Fenton氧化反应时间70 min、Fenton氧化进水p H 5.0的优化条件下,COD和TP的去除率分别为56.0%和57.0%;A/O—Fenton氧化—混凝组合工艺对COD、NH3-N、TP、浊度的总去除率分别为94.8%,96.2%,100%,94.0%,处理后出水满足GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

9.
采用大孔树脂吸附—Fenton试剂氧化法预处理含邻苯二甲酸二异丁酯(DIBP)废水。大孔树脂吸附工段的最佳实验条件为:以树脂NDA88为吸附剂,废水pH为2。NDA88经过10批次的连续使用,COD去除率基本稳定在58%左右,脱附率可达96%以上,吸附后废水COD为12 000 mg/L左右。Fenton试剂氧化工段的最佳实验条件为:H2O2加入量70 mL/L,n(H2O2):n(Fe2+)=4,废水pH 4。在此最佳条件下进行实验,Fenton试剂氧化工段COD去除率达65%,处理后废水COD为4 200 mg/L。  相似文献   

10.
采用臭氧氧化—A/O工艺处理聚乙烯醇(PVA)废水,研究了臭氧氧化时间、臭氧流量以及废水p H等因素对臭氧氧化效果的影响。实验结果表明:当气体臭氧质量浓度为30 mg/L、臭氧氧化时间为45 min、臭氧流量为4 L/min、废水p H为8时,PVA质量浓度从进水的93.2 mg/L降至4.5 mg/L;PVA溶液的BOD5/COD从0.014增加至0.310,可生化性明显改善;臭氧氧化—A/O工艺处理后出水COD降至50 mg/L左右,达到GB 8978—1996《污水综合排放标准》中的一级排放标准;出水PVA质量浓度为1.6 mg/L,明显优于A/O工艺(33.1 mg/L)。  相似文献   

11.
磁性膨润土的制备及类Fenton氧化法处理焦化废水   总被引:1,自引:0,他引:1       下载免费PDF全文
以Al-Fe柱撑膨润土为原料,通过原位氧化沉淀法负载纳米Fe3O4颗粒,制备磁性膨润土。采用XRD,SEM,EDS技术对磁性膨润土进行了表征,并将其作为类Fenton反应催化剂对焦化厂二沉池出水(COD为267.6 mg/L、色度为428度)进行了深度处理,探讨了各反应条件对处理效果的影响。实验结果表明:Fe3O4颗粒较为均匀地分布在膨润土表面,负载牢固;在H2O2加入量70 mmol/L、磁性膨润土加入量0.8 g/L、反应温度30 ℃、初始废水pH 5.0的条件下反应30 h,废水COD和色度的去除率分别达到78.5%和93.4%,COD和色度分别降至57.5 mg/L和28度,满足GB/T 19923—2005《城市污水再生利用 工业用水水质》的要求;磁性膨润土使用4次后,对废水的处理效果仍很稳定。  相似文献   

12.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2  
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   

13.
徐正超  刘阳  王世琦  马聪  方峰 《化工环保》2019,39(4):408-412
以季铵盐改性硅藻土为吸油剂,采用吸附—电化学组合工艺处理拉丝废乳化液,优化了工艺条件。实验结果表明,在乳化液pH为5.0、吸油剂加入量为20 g/L、反应温度为25 ℃的最优条件下吸附除油15 min,然后在清液pH为8.5、阳极电流密度为4 A/dm2的最优条件下电化学反应4 h后,废水无色无味,COD为43 mg/L,ρ(NH3-N)=0,ρ(Cu)= 1.6 mg/L,ρ(Zn)= 3.7 mg/L,浊度为1.1 NTU,达到GB 8978—1996污水综合排放标准。  相似文献   

14.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

15.
环氧氯丙烷生产废水的资源化处理技术   总被引:1,自引:0,他引:1  
帅晓丹  曹国民  洪芳  盛梅 《化工环保》2013,33(6):518-522
采用催化湿式过氧化物氧化法(CWPO)处理环氧氯丙烷生产废水,考察了反应温度、反应时间、反应pH、双氧水和FeSO4#x000b7;7H2O加入量及投加方式等因素对TOC去除率的影响。实验结果表明:CWPO工艺适宜的反应条件为反应温度90℃,反应pH2.0~3.0,FeSO4#x000b7;7H2O2加入量7.50~8.75g/L,双氧水加入量75mL/L,反应时间100min;双氧水和Fe2+分多次投加时的TOC去除效果明显优于一次性投加;优化条件下,环氧氯丙烷废水经CWPO工艺处理后,TOC由1790mg/L降至138mg/L,符合氯碱厂隔膜电解槽进槽盐水的要求,可以资源化利用。  相似文献   

16.
采用掺硼金刚石(BDD)电极电化学氧化法降解模拟焦化废水中的喹啉,并通过GC-MS技术分析了喹啉的降解机理及途径。实验结果表明:在常温、初始喹啉质量浓度为50.0 mg/L、电解质Na2SO4浓度为0.05 mol/L、模拟废水pH为7、电解时间为2.5 h、电流密度为30 mA/cm2、极板总面积与模拟废水体积的比为160 cm2/cm3的条件下,喹啉降解率接近100%;TOC由初始时的29.43 mg/L降至5.76 mg/L,TOC去除率达80%;COD由初始时的95.25 mg/L降至20.65 mg/L,COD去除率达78%;在降解过程中,首先在喹啉苯环的5位和8位发生羟基化反应,然后苯环发生断裂,形成带有吡啶环的中间产物及羧酸类产物,最后氮杂环开环,生成二氧化碳和水。  相似文献   

17.
采用自制改性高分子絮凝剂巯基乙酰聚乙烯亚胺处理含Hg2+废水。实验结果表明:当Hg2+的质量浓度100 mg/L、絮凝剂的加入量3.7 mg/L、废水pH=5.0、浊度为0时,Hg2+的去除率达到88%;Hg2+和悬浮物在废水中共存时,当Hg2+的质量浓度100 mg/L、浊度127 NTU时,Hg2+和悬浮物可相互促进彼此的去除,浊度的去除率由40%左右增至95%以上;用该絮凝剂处理实际废水(Hg2+的质量浓度 20~25 mg/L、浊度126 NTU、pH=3.5),当絮凝剂加入量为4.2 mg/L时,Hg2+的去除率为84%,浊度的去除率为97%,且处理效果明显优于相同条件下的传统絮凝剂。  相似文献   

18.
制备了锰粉改进的规整化微电解填料,采用电化学辅助改进微电解填料处理初始COD为6 153.6 mg/L、ρ(NH_3-N)为182.6 mg/L的焦化废水,优化了工艺条件。实验结果表明,电化学辅助微电解法处理焦化废水的最佳工艺条件为电压8 V,填料投加量20 g/L,初始废水pH 6,反应时间30 min。在此条件下废水COD去除率为75.3%,NH_3-N去除率为65.4%;在其他工艺条件相同的情况下,未通过电化学辅助的填料微电解反应的COD去除率为33.0%,NH_3-N去除率为16.2%,电化学辅助后的COD去除率和NH_3-N去除率均明显提高。  相似文献   

19.
以负载不同金属的硅胶为催化剂,采用催化臭氧氧化法处理抗生素废水生化出水,并对催化剂投加量、反应时间等反应条件进行了优化。实验结果表明:铁/硅胶催化剂效果最好;在铁/硅胶催化剂投加量为0.33 g/L、反应时间为1 h的条件下处理COD为954.7 mg/L、BOD5为66.8 mg/L、ρ(氨氮)为98 mg/L的抗生素废水生化出水,COD去除率为54.9%,氨氮去除率为44.4%,BOD5/COD由0.07提高至0.20。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号