首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为研究水分对低阶煤在堆积状态下自然发火特性的影响,基于Frank-Kamenetskii理论,采用开放式恒温加热试验法,分析不同水分含量(4%~23%)白音华褐煤的升温过程及临界自燃着火温度.进一步研究不同煤样粒径(0.5~5 mm)和煤堆体积(1.25 ~10 ×105 mm3)条件下,水分对堆积褐煤自燃特性的影响....  相似文献   

2.
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140℃环境条件下,1#,2#和3#煤样在快速升温的前20 min内,温度变化趋势相似;在60~65℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。  相似文献   

3.
为了研究低品质煤炭堆积状态下内部自热理论,采用临界自燃着火点理论和Frank-Kamenetskii 模型研究了煤堆内部热产生与热散失平衡理论以及煤堆表面的换热现象;并应用设计研发的煤堆热扩散率及温度监测实验装置和测定方法来评估低品质煤样(褐煤以及亚烟煤)临界自燃温度。结果表明:煤样堆积状态下临界自燃着火点温度可通过实验室内测定分析不同体积网框在不同环境温度条件下自热曲线得出;同体积条件下,临界自燃着火点随着煤品质的升高而增加;在140 ℃ 环境条件下,1#,2# 和3# 煤样在快速升温的前20 min内,温度变化趋势相似;在60~65 ℃,3种煤样出现温度转折点,升温速率开始减缓;根据煤样临界自燃着火点温度结合F-K热发火边界条件理论得出的堆积体积与着火点耦合关系式可预测大体积煤样自燃倾向性及临界自燃温度。  相似文献   

4.
为预测大体积低品质煤炭自然发火温度,采用恒温加热系统和气体检测分析系统,研究煤堆的自热特性。根据Frank-Kamenetskii边界条件理论,并结合自然对流和临界自燃着火点研究方法,分析煤堆内部的温度变化、水分蒸发及能量转变情况,进而探讨环境温度、氧化气体和煤自燃倾向性的关系。结果表明:煤样水分含量是导致其自热升温曲线出现下降阶段的重要因素,煤堆内部不同位置其温度下降阶段持续的时间不同;自热反应所产生气体浓度随煤温的升高而增高;未燃状态下,氧化作用最强阶段位于温度上升初始段后期;自然对流和低温氧化导致煤堆体积缩减,环境温度越高体积缩减程度越大;煤样临界自燃着火点研究方法可有效应用于大体积煤堆自燃着火点预测。  相似文献   

5.
为了了解露天含水煤堆自燃过程中温度变化特性,利用模拟和实验手段研究了煤堆内部温度的动静态分布情况,结果表明:含水煤堆升温过程经历了升温—缓慢升温—快速升温三个阶段,水分的存在使煤堆在自燃中期升温速率放缓,水分含量越高,水分蒸发所需时间越长,煤堆安全保存期越长,水分蒸发完毕后煤堆进入快速升温阶段,温度模拟结果与煤堆升温实验数据在趋势上比较符合,降雨和注水作业都会对煤堆升温过程产生较大的影响,对高温煤堆进行大量注水,只会起到临时的灭火效果,本质上是促进自燃明火发生,适当的循环注水可以起到较长的冷却效果。  相似文献   

6.
为了获得岩粉影响松散煤体自燃特性的规律,利用自制试验装置对混入岩粉的松散煤体进行了绝热低温氧化试验。试验共分3大项,第一项为松散煤体的单独氧化试验;第二类为各煤样与岩样3按不同比例进行混合的氧化试验;第三类为各岩样与煤样3按同一比例进行混合的氧化试验。在试验中,对各混合煤样的氧化升温过程进行了观测,得到了各混合煤样自然升温速率的变化规律。结果表明:在煤样内混入岩粉会减缓煤样的总体氧化升温速率,延长煤样的自然发火期;混入岩粉的量及粒径对煤样的氧化特性均存在较大的影响;通常混入岩粉量越大,其对煤样氧化升温过程影响越大,当岩煤比达到1∶1及以上时,煤样基本失去自燃的危险;在一定粒径范围内,松散煤体粒径与岩粉粒径相差较小时,二者相互影响较为剧烈;在理论上,确定出合理的岩粉量及粒径构成以防治遗煤自燃是可行的,但具体施工工艺还需进一步研究。  相似文献   

7.
为缩短煤自燃倾向性的鉴定时间,首先利用工业分析仪及程序升温试验装置,测得各煤样煤质指标值及不同温度下煤自燃指标气体含量,并通过CO体积分数确定各煤样低温氧化临界温度点;然后再通过Arrhenius公式拟合得出温度与耗氧速率间的方程,并求解出各煤样临界温度前后不同阶段的表观活化能,通过Pearson相关系数法进行煤质指标值与煤样临界温度前后表观活化能之间的关联分析,并计算其相关系数;最后选取相关系数最大的煤质指标值,建立用于计算煤样表观活化能的多元线性回归模型,分析并预测煤自燃危险性。结果表明:煤质指标中不同成分与临界温度前后表观活化能间的相关系数有较大差异,其中挥发分与临界温度前后表观活化能的负相关系数最大,分别为-0.893和-0.977,燃料比与临界温度前后表观活化能的正相关系数最大,分别为0.956和0.968。所建立的多元线性回归模型,其拟合度可达0.912 5和0.933 0。  相似文献   

8.
为了研究露天煤堆堆放时内部水分含量的动态变化特征,建立了含水煤堆自燃升温模型,利用数值模拟研究了煤堆在堆放30d内温度和水分含量的变化过程,结果表明:煤堆自迎风面开始向背风面依次形成散热带、升温带和窒息带,含水煤堆自燃温度上升过程依次分为Ⅰ升温,Ⅱ缓慢升温,Ⅲ快速升温。而煤堆内水分含量的变化也依次分为Ⅰ缓慢蒸发,Ⅱ快速蒸发和Ⅲ蒸干三个阶段。依据结论对煤堆内部水分含量的动态过程展开进一步研究,有助于将湿润煤体自燃特征规律的实验成果应用于现场实践。  相似文献   

9.
为了研究淮南矿区主采煤层自燃氧化特性及其影响因素,选取8个煤样进行煤质分析、表观结构特征和程序升温试验,比较了同层煤和不同层煤自燃特性的异同点。结果表明:对于同层煤,其特征温度比较接近;谢桥、丁集、潘三3个矿的CO体积分数大于顾桥、潘北和朱集的。对于不同层煤,挥发分越低,煤样的临界温度越延迟;13煤层的临界温度在70℃左右,干裂温度在110℃左右,8煤层的临界温度在80℃左右,干裂温度在120℃左右。6煤层的临界温度在70℃左右,干裂温度在120℃左右;同时确定了各煤层煤自燃预测预报的主要和辅助指标,其中CO和C_2H_4为主要指标,碳氧化物比值为辅助指标。  相似文献   

10.
为了研究复合粒径对松散煤体自燃的影响,利用自制试验装置对复合粒径松散煤体进行了绝热低温氧化试验。采用破碎机制出粒径分别为1~3 mm、3~5 mm、5~7 mm、7~9 mm、9~11 mm及11~13 mm的6种基础煤样。依据基础煤样进行煤炭自燃试验,试验共分为三大组:第一组为各基础煤样的单独氧化试验;第二组为某两基础煤样按1∶1、1∶2、1∶3、2∶1和3∶1比例混合制成复合煤样的氧化试验;第三组为基础煤样1与其他各基础煤样分别按1∶1混合制成复合煤样的氧化试验。在试验过程中,对煤样的温度及试验装置出口氧气体积分数进行监测,得到了各类煤样温度及氧气体积分数的变化规律。研究结果表明:总体上,随煤样加权粒径的增加,煤样的平均氧化升温速率和在同一温度下的耗氧速率减小,耗氧及温升拐点出现的温度也逐渐升高;复合煤样的氧化升温过程受其比表面积和孔隙率的共同影响,当加权粒径小于6.35 mm时,孔隙率的影响较大,当加权粒径大于6.53 mm时,比表面积的影响较大;复合煤样加权粒径越小,各粒径煤样间的相互影响越强;复合煤样中各煤样间的粒径差距越大,煤样间的相互影响越弱。  相似文献   

11.
利用热重试验对粒径小于0.2 mm的长焰煤煤粉进行了不同氧体积分数(21%、40%、50%、60%和80%)和升温速率(20℃/min、30℃/min、40℃/min、50℃/min和60℃/min)的25种工况下煤氧复合过程中热解特性的测定,分析了两种因素对各特征值的影响。结果表明:以热失重速率为基准,长焰煤在含氧气氛下的热解过程可分为失水失重阶段、氧化增重阶段及着火、燃烧和炭化3个阶段;通用着火特性指标越大,煤样燃烧特性越好,自燃点越小,煤样工业分析结果应与其实际生产过程中的自燃危险性相结合;升温速率不变时自燃点随氧体积分数上升而下降,而煤氧复合时间随氧体积分数上升呈现先降低再微弱增加的趋势;氧体积分数一定时自燃点随升温速率上升而上升,煤氧复合时间则随之下降。对自燃点及煤氧复合时间进行均值无量纲化,并将其与无量纲化升温速率进行拟合,决定系数(R~2)约为1.0;提出了煤氧复合难易程度参数(D),计算结果表明,即使自燃点随升温速率上升发生滞后,煤氧复合难度仍然减弱。  相似文献   

12.
为提高煤自燃绝热氧化试验结论的可靠性、完整性及应用性,采用绝热氧化试验方法研究褐煤和烟煤2种煤样的自燃氧化现象,根据试验结果,建立煤自燃特性预测模型,模拟褐煤和烟煤的升温速率和氧化过程,用试验数据验证模型的有效性;用验证后的模型预测不同煤质参数、动力学参数条件下煤的自燃特性。结果表明:试验和模型预测的最短着火时间褐煤分别为5.6和5.1 h,烟煤分别为43.8和42.2 h。该模型能够辅助试验获得完整的升温曲线,预测煤氧化升温到着火点所需要的时间。  相似文献   

13.
化学阻燃剂通过化学作用破坏或降低煤分子中活化能较低易被氧化的活性基团,使煤自燃链式反应中断难以达到自燃。为研究煤氧化阻化过程中的热特性变化,通过煤的热重实验,从微观角度研究了次磷酸盐在煤自燃氧化过程中对其表面官能团的影响,分析了阻化剂添加前后的热特性曲线和特征温度,研究了不同升温速率及不同粒径下阻化煤样的热特性变化规律。结果显示:随升温速率的增大和煤样粒径的减小,热特性曲线及特征温度均出现向后推移,特征温度出现不同程度的升高。  相似文献   

14.
为了研究水分对煤自燃升温过程的影响,运用XK-Ⅳ型煤自然发火试验装置对大南湖高水分含量松散煤体进行煤自然发火的特性参数测定,分析高水分含量对煤自燃升温过程的耗氧速率、CO和CO2产生率及放热强度等特性参数的影响。结果表明,煤样中的高水分含量对煤自燃过程不同阶段的影响不同,低温阶段(80℃以前),高水分含量促进过氧络合物生成,对煤氧复合有促进作用;80~110℃阶段,高水分含量蒸发汽化潜热对煤氧复合反应有抑制作用。  相似文献   

15.
为探究氧气浓度与升温速率对煤自燃特性的影响,利用TG/DSC-FTIR联用热分析技术测试3种不同变质程度的煤样在不同氧体积分数和不同升温速率下的放热特性,分析3种煤样在氧化过程中特征温度、热效应及标志性气体产生量等参数的变化规律。结果表明:氧体积分数一定时,升温速率越小,放热峰值、特征温度和指标气体释放峰值越向低温区偏移。在相同升温速率下,随着氧气体积分数的减小,煤氧化放热峰值温度降低;煤自燃指标气体峰值对应的温度逐渐向高温区域移动。煤变质程度增高,煤自燃特征温度呈增大趋势;放热量的峰值降低,对应的峰值温度增大;指标气体释放峰值温度增大,自燃危险性呈降低趋势。  相似文献   

16.
为研究不同供风量对褐煤自燃特性的影响规律,选取平庄瑞安煤矿褐煤作为试验煤样,利用程序升温试验和气相色谱仪,研究低温氧化阶段不同供风量条件下褐煤自燃极限参数与温度、供风量之间的变化规律。结果表明:温度在40~120℃时,随着供风量增大,褐煤的最小浮煤厚度和下限氧浓度降低,上限漏风强度增加;温度在120~200℃,供风量为40~80 mL/min和160~200 mL/min时,随着供风量的增加,其最小浮煤厚度和下限氧浓度增加,上限漏风强度减少;供风量为80~160 mL/min时,在供风量增大的情况下,褐煤的最小浮煤厚度和下限氧浓度降低,上限漏风强度增加;随着供风量减小,煤样临界点温度降低。  相似文献   

17.
为研究褐煤燃烧阶段碳氧化物生成规律,以平庄瑞安褐煤为例,用自制程序升温系统完成褐煤燃烧实验,得到煤样燃烧阶段不同温度下煤样下游混合气体中的CO,CO2及O2体积分数,计算耗氧速率,CO与CO2生成速率以及格雷哈姆系数的3种形式R1,R2和R3的值。研究结果表明:温度为250~399℃时,耗氧量、CO2体积分数、耗氧速率、CO2生成速率和R1值均随着温度的升高而增大;CO体积分数、CO生成速率和R2值在250~348℃时随温度的升高而增大,到348℃时开始下降;R3值与温度之间呈指数关系递减;整个燃烧阶段,R1值和R3值变化显著,R2值变化不大,说明格雷哈姆系数可作为预测褐煤燃烧状态的指标。  相似文献   

18.
为探究易自燃煤在常温条件下的氧化特性,自行设计煤常温封闭氧化实验装置,采用实验研究与回归分析2种方法,分析易自燃煤发生氧化反应的气体变化过程,探究3种粒径煤样在20 ℃有限空间内的耗氧与产气特征。结果表明:易自燃煤样在16 d常温封闭氧化过程中,容器内O2体积浓度呈指数衰减、CO和CO2体积浓度呈指数增长的变化规律;在0.06~0.83 mm范围内,粒径越大,易自燃煤耗氧速率越大,CO和CO2产生速率则先增大后减小;介于中间的粒径为0.13~0.25 mm易自燃煤氧化反应最强烈,更容易发生氧化。研究结果对揭示生产环境温度下煤粒粒径对煤自燃的影响有一定的意义。  相似文献   

19.
为研究水浸干燥作用对煤自燃特性的影响,采用真空干燥法与自然风干法分别处理水浸过的煤样,通过程序升温试验测试原煤样与处理后的2种煤样在氧化过程中产生的CO体积分数和C_2H_4体积分数,根据CO体积分数增长速率突变点和C_2H_4产生温度分别计算3种煤样自燃特征温度,分析水浸干燥作用对据煤样自燃特征温度的影响;通过氧化放热公式计算3种煤样的耗氧速率和放热强度,分析水浸干燥作用对煤样氧化放热性能的影响;最后分析水浸干燥作用对格雷哈姆系数R_2、R_3和链烷比预测煤自燃特征温度准确性的影响。结果表明:水浸干燥作用改变煤的自燃特性,升高煤自燃特征温度,降低煤氧化放热性能,使格雷哈姆系数R_2、R_3预测煤自燃特征温度的准确性降低,但对链烷比预测煤自燃特征温度的准确性影响较小。  相似文献   

20.
低温条件下,煤氧复合作用所产生的热量会使煤体温度升高,甚至发生自燃。为确定煤的氧化性特征,对煤样进行加热升温试验,在程序控制炉中采用相同的线性升温条件(以2℃/h的速率从20℃升至125℃)进行试验,研究通入空气、煤氧化变质程度及不同煤样的影响。采用温差分析方法对煤样升温数据进行处理,分析煤样的低温氧化特点和规律。结果表明,在升温过程中,升温速率曲线呈现增大、减小、再次增加的规律。通入空气煤样的升温速率曲线要高于不通空气的升温速率曲线,新鲜煤样的升温速率曲线要高于氧化变质煤样的升温速率曲线,易自燃煤样的升温速率曲线要高于难自燃煤样的升温速率曲线。理论分析表明,升温速率曲线数值大小反映了氧化放热率的强弱。升温速率曲线间的差值越大,则氧化放热率相差越大。因此,在相同的控制升温条件下,不同煤样的升温速率曲线数值大小可有效地反映自燃性的相对强弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号