首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Eight trace elements, Si, Cl, K, Ca, Ti, Mn, Fe and Zn in the near-ground atmospheric aerosols were evaluated in the northwestern part of Mount Kenya using a dichotomous sampler and an EDXRF spectrometer. The samples were taken at 2 sites situated in Nanyuki area, which is roughly on the Equator. The sampler segregated the aerosol into two aerodynamic diameter (ad) size fractions, fine (<3.5 μm ad) and coarse (>3.5 and <18 μm ad). The elemental concentrations in the two size fractions were quantified and the elements assigned to known sources. Local wind blown dust related to agricultural activities and fire burning was found to dominate the lower tropospheric aerosols. There was inconclusive evidence of long range-transported aerosols being moved by night transport from the middle to the lower parts of the troposphere. Influence of the Indian Ocean marine aerosol was suggested but conclusive evidence was lacking.  相似文献   

2.
A chemical mass balance of fine aerosol (<1.5 μm AED) collected at three European sites was performed with reference to the water solubility of the different aerosol classes of components. The sampling sites are characterised by different pollution conditions and aerosol loading in the air. Aspvreten is a background site in central Sweden, K-puszta is a rural site in the Great Hungarian Plain and San Pietro Capofiume is located in the polluted Po Valley, northern Italy. The average fine aerosol mass concentration was 5.9 μg m-3 at the background site Aspvreten, 24 μg m-3 at the rural K-puszta and 38 μg m-3 at the polluted site San Pietro Capofiume. However, a similarly high soluble fraction of the aerosol (65–75%) was measured at the three sites, while the percentage of water soluble organic species with respect to the total soluble mass was much higher at the background site (ca. 50%) than at the other two sites (ca. 25%). A very high fraction (over 70%) of organic compounds in the aerosol consisted of polar species. The presence of water soluble macromolecular compounds was revealed in the samples from K-puszta and San Pietro Capofiume. At both sites these species accounted for between ca. 20–50% of the water soluble organic fraction. The origin of the compounds was tentatively attributed to biomass combustion.  相似文献   

3.
An investigation of water-soluble organic carbon (WSOC) in atmospheric particles was conducted as an index of the formation of secondary organic aerosol (SOA) from April 2005 to March 2006 at Maebashi and Akagi located in the inland Kanto plain in Japan. Fine (<2.1 μm) and coarse (2.1–11 μm) particles were collected by using an Andersen low-volume air sampler, and WSOC, organic carbon (OC), elemental carbon (EC), and ionic components were measured. The mean mass concentrations of the fine particles were 22.2 and 10.5 μg m?3 at Maebashi and Akagi, respectively. The WSOC in fine particles accounted for a large proportion (83%) of total WSOC. The concentration of fine WSOC ranged from 1.2 to 3.5 μg-C m?3 at Maebashi, rising from summer to fall. At Akagi, it rose from spring to summer, associated with the southerly wind from urban areas. The WSOC/OC ratio increased in summer at both sites, but the ratio at Akagi was higher, which we attributed to differences in primary emissions and secondary formation between the sites. The fine WSOC concentration was significantly positively correlated with concentrations of SO42?, EC, and K+, and we inferred that WSOC was produced by photochemical reaction and caused by the combustion of both fuel and biomass. We estimated that SOA accounted for 11–30% of the fine particle mass concentration in this study, suggesting that SOA is a significant year-round component in fine particles.  相似文献   

4.
Particle emissions caused by railway traffic have hardly been investigated in the past, due to their obviously minor influence on air quality compared to automotive traffic. In this study, emissions related to particle abrasion from wheels and tracks were investigated next to a busy railway line in Zürich (Switzerland), where trains run nearly exclusively with electrical locomotives. Hourly size-segregated aerosol samples (0.1–1, 1–2.5 and 2.5–10 μm) were collected with a rotating drum impactor (RDI) and subsequently analyzed by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). In this way, hourly elemental mass concentrations were obtained for chromium, manganese, iron and copper, which are the elements most relevant for railway abrasion. Additionally, daily aerosol filters were collected at the same site as well as at a background site for subsequent analysis by gravimetry and wavelength dispersive XRF (WD-XRF). Railway related ambient air concentrations of iron and manganese were calculated for the coarse (2.5–10 μm) and fine (<2.5 μm) particle fraction by means of a Mn/Fe ratio investigation. The comparison to train type and frequency data showed that 75% and 60% of the iron and manganese mass concentrations related to cargo and passenger trains, respectively, were found in the coarse mode. The railway related iron mass concentration normalized by the train frequency ranges between 10 and 100 ng m−3 h iron in 10 m distance to the tracks, depending on train type. It is estimated that the personal exposure next to a busy railway line above ground is more than a magnitude lower than inside a subway station.  相似文献   

5.
Ambient daily PM10 aerosol samples were collected at two sites in Tanzania in May and June 2005 (during the wet season), and their chemical characteristics were studied. The sites were a rural site in Morogoro and an urban kerbside site in Dar es Salaam. A Gent PM10 stacked filter unit sampler with sequential Nuclepore polycarbonate filters, providing fine and coarse size fractions, and a PM10 sampler with quartz fibre filters were deployed. Parallel collections of 24 h were made with the two samplers and the number of these collections was 13 in Morogoro and 16 in Dar es Salaam. The average mass concentration of PM10 was 27 ± 11 μg/m3 in Morogoro and 51 ± 21 μg/m3 in Dar es Salaam. In Morogoro, the mean concentrations of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were 6.8, 0.51, and 2.8 μg/m3, respectively. In contrast, higher mean concentrations (11.9, 4.6, and 3.3 μg/m3, respectively) were obtained for Dar es Salaam. At both sites, species and elements, such as black carbon, NH4+, non-sea-salt SO42?, K, and Ni (and at Dar es Salaam also V, As, Br, and Pb) were mainly present in the fine size fraction. The common crustal and sea-salt elements, including Na, Mg, Al, Si, Cl, Ca, Ti, Mn, Fe, and Sr, and also NO3? and P (and to a lesser extent Cu and Zn) were concentrated in the coarse particles. Aerosol chemical mass closure indicated that the PM10 mass in Morogoro consisted, on average, of 48% organic matter (OM), 44% crustal matter, 4% sea salt, and 2% EC, while in Dar es Salaam OM, crustal matter, sea salt, and EC represented 37%, 32%, 9%, and 9% of the PM10 mass. The contributions of the secondary inorganic aerosol (non-sea-salt sulphate, nitrate, and ammonium) were small, i.e., only 5% in total at each site. Carbonaceous materials and crustal matter were thus the most important components of the PM10 mass. It is suggested that biomass burning is a major contributor to the OM; at Dar es Salaam there is also a very substantial contribution from traffic. A source apportionment calculation indicated that 68% of the OC at this site originated from traffic exhaust versus 32% from charcoal burning. The crustal matter at Morogoro is likely mainly attributable to soil dust resuspension, whereas in Dar es Salaam it is likely mostly resuspended road dust.  相似文献   

6.
Absorption of sunlight by sub-micron particles is an important factor in calculations of the radiation balance of the earth and thus in climate modelling. Carbon-containing particles are generally considered as the most important in this respect. Major sources of these particles are generally considered to be bio-mass burning and vehicle exhaust. In order to characterise size fractionated particulate matter in a rural village in Botswana with respect to light absorption and elemental content experiments were performed, in which simultaneous sampling was made with a dichotomous impactor and a laboratory-made sampler, made compatible with black carbon analysis by reflectometry. The dichotomous impactor was equipped with Teflon filters and the other sampler with glass fibre filters. Energy dispersive X-ray fluorescence was used for elemental analysis of both kinds of filters. It appeared that Teflon filters were the most suitable for the combination of mass-, elemental- and black carbon measurements. The black carbon content in coarse (2.5–10 μm) and fine (<2.5 μm) particles was determined separately and related to elemental content and emission source. The results show that the fine particle fraction in the aerosol has a much higher contribution of black particles than the coarse particle fraction. This observation is valid for the village in Botswana as well as for a typical industrialised city in Sweden, used as a reference location.  相似文献   

7.
Regular measurements of total mass concentration and mass-size distribution of near-surface aerosols, made using a ten-channel Quartz Crystal Microbalance (qcm) Impactor for the period October 1998–December 1999 at the tropical coastal station Trivandrum (8.5°N, 77°E), are used to study the response of aerosol characteristics to regional mesoscale and synoptic processes. Results reveal that aerosol mass concentrations are generally higher under land breeze conditions. The sea breeze generally has a cleansing effect, depleting the aerosol loading. The continental air (LB regime) is richer in accumulation mode (submicron) aerosols than the marine air. On a synoptic scale, aerosol mass concentration in the submicron mode decreased from an average high value of ∼86 μg m−3 during the dry months (January–March) to ∼11 μg m−3 during the monsoon season (June–September). On the contrary mass concentration in the supermicron mode increased from a low value of ∼15 μg m−3 during the dry months to reach a comparatively high value of ∼35 μg m−3 during April, May. Correspondingly, the effective radius (Reff) increased from a low value of 0.15–0.17 μm to ∼0.3 μm indicating a seasonal change in the size distribution. The mass-size distribution shows mainly three modes, a fine mode (∼0.1 μm); a large mode (∼0.5 μm) and a coarse mode (∼3 μm). The fine mode dominates in winter. In summer the large mode becomes more conspicuous and the coarse mode builds up. The fine mode is highly reduced in monsoon and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. The size distribution tends to revert to the winter pattern in the post-monsoon season. Accumulation (submicron) aerosols account for ∼98% of the total surface area and ∼70% of the total volume of aerosols during winter. During monsoon, even though they still account for ∼90% of the area, their contribution to the volume is reduced to ∼50%; the coarse aerosols account for the rest.  相似文献   

8.
The size distribution of ambient air particles and associated organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) including hexachlorocyclohexanes (HCHs), DDT and metabolites, etc., was investigated at a traffic-impacted site of Thessaloniki, Greece. Investigation took place during wintertime of 2006 at two heights above ground: at the street level (1.5 m) and at the rooftop level (15 m). Size-resolved samples (<0.95 μm, 0.95–1.5 μm, 1.5–3 μm, 3–7.5 μm and >7.5 μm) were concurrently collected from the two height levels using five-stage high volume cascade impactors. At both heights, particle mass exhibited bimodal distribution with peaks in the 0.95–1.5 μm and the 3–7.5 μm size fractions, whereas most organic pollutants exhibited one peak at 0.95–1.5 μm. Apart from the 0.95–1.5 μm fraction, particle concentrations of all size ranges were significantly higher at the street level than at the rooftop as a result of more intensive vehicular emissions and road dust resuspension. On the contrary, the concentrations of most organic pollutants did not differentiate significantly between the two elevations.  相似文献   

9.
Sulphate size distributions were measured at the coastal station of Mumbai (formerly Bombay) through 1998, during the Indian ocean experiment (INDOEX) first field phase (FFP), to fill current gaps in size-resolved aerosol chemical composition data. The paper examines meteorological, seasonal and source-contribution effects on sulphate aerosol and discusses potential effects of sulphate on regional climate. Sulphate size-distributions were largely trimodal with a condensation mode (mass median aerodynamic diameter or MMAD 0.6 μm), a droplet mode (MMAD 1.9–2.4 μm) and a coarse mode (MMAD 5 μm). Condensation mode sulphate mass-fractions were highest in winter, consistent with the high meteorological potential for gas-to-particle conversion along with low relative humidity (RH). The droplet mode concentrations and MMADs were larger in the pre-monsoon and winter than in monsoon, implying sulphate predominance in larger sized particles within this mode. In these seasons the high RH, and consequently greater aerosol water in the droplet mode, would favour aerosol-phase partitioning and reactions of SO2. Coarse mode sulphate concentrations were lowest in the monsoon, when continental contribution to sulphate was low and washout was efficient. In winter and pre-monsoon, coarse mode sulphate concentrations were somewhat higher, likely from SO2 gas-to-particle conversion. Low daytime sulphate concentrations with a large coarse fraction, along with largely onshore winds, indicated marine aerosol predominance. High nighttime sulphate concentrations and a coincident large fine fraction indicated contributions from anthropogenic/industrial sources or from gas-to-particle conversion. Monthly mean sulphate concentrations increased with increasing SO2 concentrations, RH and easterly wind direction, indicating the importance of gas-to-particle conversion and industrial sources located to the east. Atmospheric chemistry effects on sulphate size distributions in Mumbai, indicated by this data, must be further examined.  相似文献   

10.
Continuous monitoring of atmospheric aerosol properties is very much essential in view of their wide variability in space and time. Both active as well as passive remote-sensing techniques are available apart from direct (in situ) methods to carry out such measurements. An attempt has been made in this paper to inter-compare aerosol features derived from the lidar (active sensor), multi-channel solar radiometer (passive sensor) and Andersen sampler (direct technique). The ground-level concentrations derived from the bistatic argon-ion lidar has been compared with those derived from the Andersen sampler. The results are found to be in fair agreement. The number-size distribution of aerosols retrieved from the multi-channel solar radiometer has been compared with the mass-size distribution derived from the Andersen sampler. The size spectra showed bi-modal distribution with accumulation mode around 0.08 μm and the coarse mode around 4.0 μm during the study period. Thus, the study reveals a good correspondence between the properties of aerosol particulates measured with different measurement techniques.  相似文献   

11.
In this study, the BC aerosol measured at two very different urban sites is compared in terms of concentration, seasonal variation, and size distribution. During a 14 month study, one impactor sample was performed each month on a day with typical meteorological conditions. One (Vienna) or three (Uji) filter samples were obtained during the sampling time of the impactors. BC concentration in both the filter and impactor samples was analyzed with an optical technique (integrating sphere technique), where a calibration curve obtained from commercial carbon black is used to convert the optical signal to BC mass. Gravimetric mass concentration was measured at both sites. The gravimetric mass size distribution was measured only in Vienna. At both sites, the yearly average of the BC concentration on the sampling days was around 5 μg m−3. In Vienna, some seasonal trend with high concentrations during the cold season was observed, while in Uji, no pronounced seasonal trend was found. The BC size distribution in Uji was distinctly bimodal in the submicron size range. Log-normal distributions were fitted through the impactor data. The average BC mass median diameters (MMD) of the two submicron modes were 0.15 and 0.39 μm. Each mode contained about the same amount of BC mass. In Vienna only one submicron BC mode (average MMD 0.3 μm) was found because of the low size resolution of the impactor. An analysis of humidity effects on the MMDs of BC (both sites) and gravimetric mass (Vienna only) indicates that the Vienna aerosol is partly mixed internally with respect to BC, while the Uji aerosol seems to be externally mixed.  相似文献   

12.
Size-resolved aerosol particle samples in the size range 0.1–10 μm aerodynamic diameter were collected in the years 2003 and 2004 at an urban background station in Mainz, Germany. Size, morphology, chemical composition and mixing state of more than 5400 individual particles of 7 selected sampling days were analyzed in detail by scanning electron microscopy and energy-dispersive X-ray microanalysis. In addition, transmission electron microscopy, aerosol mass spectrometry and atomic force microscopy were applied to obtain detailed information about the mixing state of the particles. The fine particle fraction (diameter<1 μm) is always dominated by complex secondary aerosol particles (⩾90% by number) independent from air mass origin. These particles are complex internal mixtures of ammonium and sodium sulfates, nitrates, and organic material. Between 20% and 40% of the complex secondary aerosol particles contain soot inclusions. The composition of the coarse particle fraction (>1 μm diameter) is strongly dependant on air mass history with variable abundances of complex secondary aerosol particles, aged sea salt, silicates, silicate mixtures, calcium sulfates, calcium sulfate/carbonate mixtures, calcium nitrate/carbonate mixtures, biological particles, and external soot.The dominance of complex secondary aerosol particles shows that reduction of the precursor gases is a major goal for successful reduction strategies for PM10.  相似文献   

13.
The metropolitan area of Rio de Janeiro is one of the twenty biggest urban agglomerations in the world, with 11 million inhabitants in the metropolitan area, and has a high population density, with 1700 hab. km?2. For this aerosol source apportionment study, the atmospheric aerosol sampling was performed at ten sites distributed in different locations of the metropolitan area from September/2003 to December/2005, with sampling during 24 h on a weekly basis. Stacked filter units (SFU) were used to collect fine and coarse aerosol particles with a flow rate of 17 L min?1. In both size fractions trace elements were analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) as well as water-soluble species by Ion-Chromatography (IC). Also gravimetric analysis and reflectance measurements provided aerosol mass and black carbon concentrations. Very good detection limits for up to 42 species were obtained. Mean annual PM10 mass concentration ranged from 20 to 37 μg m?3, values that are within the Brazilian air quality standards. Receptor models such as principal factor analysis, cluster analysis and absolute principal factor analysis were applied in order to identify and quantify the aerosol sources. For fine and coarse modes, circa of 100% of the measured mass was quantitatively apportioned to relatively few identified aerosol sources. A very similar and consistent source apportionment was obtained for both fine and coarse modes for all 10 sampling sites. Soil dust is an important component, accounting for 22–72% and for 25–48% of the coarse and fine mass respectively. On the other hand, anthropogenic sources as vehicle traffic and oil combustion represent a relatively high contribution (52–75%) of the fine aerosol mass. The joint use of ICP-MS and IC analysis of species in aerosols has proven to be reliable and feasible for the analysis of large amount of samples, and the coupling with receptor models provided an excellent method for quantitative aerosol source apportionment in large urban areas.  相似文献   

14.
An instrument was developed for semi-continuous measurement of the size-distribution of submicron nitrate, ammonium, sulphate and chloride. Novel in the instrumentation is the size-classification, which is realised with a pre-separator that consists of a set of four parallel impactors. The cut-off diameters of the impactors are at 0.18, 0.32, 0.56 and 1.0 μm. Aerosols smaller than the associated cut-off size pass the respective impactor and arrive in the detector. The manifold with impactors contains two additional lines, one open line and one containing a filter that removes all aerosols. This latter line provides an on-line field-blank. The sample air-flow is automatically switched by wide-bore ball valves to one of the six sampling lines for a period of 20 min; a measuring cycle thus takes 2 h.Down-stream of the pre-separator the sampling and automated on-line analysis of the transmitted aerosol is accomplished with a “MARGA”. In this instrument steam condensation is used to grow the aerosol. The droplets formed are collected in a cyclone that drains to wet-chemical analysis systems. A wet-denuder between pre-separator and collector removes interfering gases, like nitric acid and ammonia. This enables artefact-free and thus representative semi-continuous measurement of the size-distribution of the semi-volatile (ammonium) nitrate.The novel MARGA-sizer was first used in a 1 week field-test. After modifications it was then deployed in a monitoring campaign of 2 months in the summer of 2002, at the top level of the meteo-tower of Cabauw in the centre of the Netherlands. The high location, 200 m, was chosen to obtain data on ammonium nitrate that are minimally affected by surface emissions of ammonia. The data coverage over the period was over 60%; failure of the instrumentation was mainly associated with spells of extreme solar heating of the tower and associated high temperatures inside.The average concentration of nitrate was 2.6 μg m−3, which was very similar to the value interpolated from data in the national network. The mass concentration of submicron nitrate was 2.0 μg m−3, of which 46% was in particles smaller than 0.32 μm. To put this in perspective: the concentration of submicron sulphate was similar to that of nitrate, while 53% was in particles smaller than 0.32 μm. The ion balance showed that the compounds were present as the fully neutralised salts. Quite large diurnal variations were observed for nitrate, with a surprising maximum in the afternoon. The size-distribution of the semi-volatile nitrate was rather constant over a daily cycle.  相似文献   

15.
During the month of August 2004, the size-resolved number concentration of water-insoluble aerosols (WIA) from 0.25 to 2.0 μm was measured in real-time in the urban center of Atlanta, GA. Simultaneous measurements were performed for the total aerosol size distribution from 0.1 to 2.0 μm, the elemental and organic carbon mass concentration, the aerosol absorption coefficient, and the aerosol scattering coefficient at a dry (RH=30%) humidity. The mean aerosol number concentration in the size range 0.1–2.0 μm was found to be 360±175 cm−3, but this quantity fluctuated significantly on time scales of less than one hour and ranged from 25 to 1400 cm−3 during the sample period. The mean WIA concentration (0.25–2.0 μm) was 13±7 cm−3 and ranged from 1 to 60 cm−3. The average insoluble fraction in the size range 0.25–2.0 μm was found to be 4±2.5% with a range of 0.3–38%. The WIA population was found to follow a consistent diurnal pattern throughout the month with concentration maxima concurring with peaks in vehicular traffic flow. WIA concentration also responded to changes in meteorological conditions such as boundary layer depth and precipitation events. The temporal variability of the absorption coefficient followed an identical pattern to that of WIA and ranged from below the detection limit to 55 Mm−1 with a mean of 8±6 Mm−1. The WIA concentration was highly correlated with both the absorption coefficient and the elemental carbon mass concentration, suggesting that WIA measurements are dominated by fresh emissions of elemental carbon. For both the total aerosol and the WIA size distributions, the maximum number concentration was observed at the smallest sizes; however the WIA size distribution also exhibited a peak at 0.45 μm which was not observed in the total population. Over 60% of the particles greater than 1.0 μm were observed to be insoluble in the water sampling stream used by this instrumentation. Due to the refractive properties of black carbon, it is highly unlikely that these particles could be composed of elemental carbon, suggesting a crustal source for super-micron WIA.  相似文献   

16.
During April 1996–June 1997 size-segregated atmospheric aerosol particles were collected at an urban and a rural site in the Helsinki area by utilising virtual impactors (VI) and Berner low-pressure impactors (BLPI). In addition, VI samples were collected at a semi-urban site during October 1996–May 1997. The average PM2.3 (fine particle) concentrations at the urban and rural sites were 11.8 and 8.4 μg/m3, and the PM2.3−15 (coarse particle) concentrations were 12.8 and about 5 μg/m3, respectively. The difference in fine particle mass concentrations suggests that on average, more than one third of the fine mass at the urban site is of local origin. Evaporation of fine particle nitrate from the VI Teflon filters during sampling varied similarly at the three sites, the average evaporation being about 50–60%.The average fine particle concentrations of the chemical components (25 elements and 13 ions) appeared to be fairly similar at the three sites for most components, which suggests that despite the long-range transport, the local emissions of these components were relatively evenly distributed in the Helsinki area. Exceptions were the average fine particles Ba, Fe, Sb and V concentrations that were clearly highest at the urban site pointing to traffic (Ba, Fe, Sb) and to combustion of heavy fuel oil (V) as the likely local sources. The average coarse particle concentrations for most components were highest at the urban site and lowest at the rural site.Average chemical composition of fine particles was fairly similar at the urban and rural sites: non-analysed fraction (mainly carbonaceous material and water) 43% and 37%, sulphate 21% and 25%, crustal matter 12% and 13%, nitrate 12% and 11%, ammonium 9% and 10% and sea-salt 2.5% and 3.2%, respectively. At the semi-urban site also, the average fine particle composition was similar. At the urban site, the year round average composition of coarse particles was dominated by crustal matter (59%) and the non-analysed components (28%, mainly carbonaceous material and water), while the other contributions were much lower: sea-salt 7%, nitrate 4% and sulphate 2%. At the rural site, the coarse samples were collected in spring and summer and the percentage was clearly lower for crustal matter (37%) and sea-salt (3%) but higher for the not-analysed fraction (51%). At the semi-urban site, the average composition of coarse particles was nearly identical to that at the urban site.Correlations between the chemical components were calculated separately for fine and coarse particles. In urban fine particles sulphate, ammonium, Tl, oxalate and PM2.3 mass correlated with each other and originated mainly from long-range transport. The sea-salt ions Na+, Cl and Mg2+ formed another group and still another group was formed by the organic anions oxalate, malonate, succinate, glutarate and methane sulphonate. Ni and V correlated strongly pointing to combustion of heavy fuel oil as the likely source. In addition, some groups with lower correlations were detected. At the rural and semi-urban sites, the correlating components were rather similar to those at the urban site, although differences were also observed.  相似文献   

17.
Measurements on size distribution of atmospheric aerosol were made at Dayalbagh, Agra during July to September 1998. A 4-stage cascade particle sampler (CPS - 105) which fractionates particles in sizes ranging between 0.7 and >10.9 μm, was used. Samples were collected on Whatman 41 filters. The filters were analyzed for the major water-soluble ions. The anions (F, Cl, NO3 and SO4) were analyzed by Dionex DX-500 ion chromatograph while atomic absorption and colorimetric techniques were used for the analysis of cations (Na, K, Ca and Mg) and NH4, respectively. The average mass of aerosol was found to be 131.6 μg m−3 and aerosol composition was found to be influenced by terrigeneous sources. The mass size distribution of total aerosol and the ions NH4, Cl, NO3, K, Ca, Mg, SO4 and Na was bimodal while that of F was unimodal. SO4, F, K and NH4 dominated in the fine mode while Ca, Mg, Cl and NO3 were in abundance in coarse fraction. Na was found in both coarse as well as fine mode. Coarse mode SO4 and NO3 have been ascribed to contribution from re-suspension of soil and formation by heterogeneous oxidation on soil derived particles. Preponderance of K in fine mode is attributed to emissions from vegetation and from burning of plant materials. Ca, Mg, Cl and NO3 are largely soil derived and hence dominate in coarse fraction. Equivalent ratios of NH4/(SO4+NO3) were calculated for both fine and coarse aerosols. The coarse mode ratio varied between 0.7 and 1.4 while in fine mode it ranged between 1.4 and 1.9. It shows that aerosol is basic, the basicity of coarse mode is due to higher concentration of soil-derived alkaline components while the basicity in fine mode is due to neutralization of acidity by NH3.  相似文献   

18.
As part of the BRACE 2002 May field intensive, the NOAA Twin Otter flew 21 missions over terrestrial, marine, and mixed terrestrial and marine sites in the greater Tampa, Florida, airshed including over Tampa Bay and the Gulf of Mexico. Aerosols were collected with filter packs and their inorganic fractions analyzed post hoc with ion chromatography. Anion mass dominated both the fine- (particle diameters ⩽2.5 μm) and coarse-mode (particle diameters 10.0–2.5 μm) inorganic fractions: SO42−in the fine fraction, 3.7 μg m−3 on average and Cl and NO3 in the coarse fraction, 0.6 μg m−3 on average and 1.4 μg m−3 on average, respectively. Ammonium ion dominated the inorganic fine-mode cation mass, averaging 1.2 μg m−3, presumably in association with SO42. Coarse-mode cation mass was dominated by Na+, but the concentrations of Ca2+ and K+ together often equaled or exceeded the Na+ mass which was, on average, 0.6 μg m−3. Nitrate appeared predominantly in the coarse rather than the fine fraction, as expected, and the fine fraction never contributed >15% of the total NO3 concentration. Nitric acid dominated the NO3 contribution from both aerosol size fractions, and constituted at least 45% of the total NO3 in all samples. Coarse-mode Cl depletion, and hence NO3 replacement, reached 100% within the first 4 h of plume travel from the urban core in some samples, although it was most often less than 100% and slightly below the expected 1:1 ratio with coarse-mode NO3 concentration: the slope of the regression line of NO3 concentration to Cl depletion was 0.9 in the coarse fraction. In addition, terrestrial samples were markedly lower in Cl depletion, and thus in substituted NO3, than were marine and mixed samples: 15–25% depletion in terrestrial samples vs. 50–65% in marine samples with the same air mass age. Thus, we conclude that NO3 and its progenitor compound HNO3 were present in the Tampa airshed in insufficient amounts to titrate fully the slightly alkaline coarse-mode particles there, and to replace completely the Cl from the coarse-mode NaCl.  相似文献   

19.
Particulate pollution transport is estimated by means of cross-correlation and regression analyses. The aerosol particle size number spectrum in the form of 12 fraction concentrations is measured in units cm−3 (particles per cm3) every 10 minutes during three approximately 20-day measurement campaigns simultaneously in two measurement points in Estonia. The distance between these points is approximately 100 km for two campaigns, and 7 km for the third campaign. Two electrical aerosol spectrometers designed at Tartu University, having a wide particle diameter range (10 nm–10 μm), are used. The spectrometer's record is the mean particle spectrum for the 10 min measurement time. The air pollution transport is investigated during the time intervals when the air mass moves from one measurement point towards the other. The time series of aerosol size fraction concentrations for both locations are prewhitened to eliminate auto-correlation and to achieve stationary series of the ARIMA residuals. Then the cross-correlation function of these two series of residuals is calculated. The time lag corresponding to the mode of this function is treated as the mean time of pollution transport from the windward measurement point to the leeward one. For the submicron aerosol fraction (d=60 nm–1 μm) 3–5 h time lags are found. Mostly these time lags coincide with the mean wind velocities on some of the pressure levels (ground, 850 and 700 hPa) available in the study. In cross-wind cases the fraction concentrations measured in two points separated by 100 km were uncorrelated, but for the two points separated by 7 km there was quite a high correlation with zero time lag. The part of local and distant sources in the formation of the particle concentration in the leeward location is estimated by regression analysis.  相似文献   

20.
A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas–aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds generated from hydrocarbon–nitrogen oxide (HC/NOx) mixtures irradiated in the presence of fine (<2.5 μm) particulate matter. The goal was to determine to what extent photochemical oxidation products of aromatic hydrocarbons contribute to secondary organic aerosol formation through uptake on pre-existing inorganic aerosols in the absence of liquid water films. Irradiations were conducted with toluene, p-xylene, and 1,3,5-trimethylbenzene in the presence of NOx and ammonium sulfate aerosol, with propylene added to enhance the production of radicals in the system. The secondary organic aerosol yields were determined by dividing the mass concentration of organic fraction of the aerosol collected on quartz filters by the mass concentration of the aromatic hydrocarbon removed by reaction. The mass concentration of the organic fraction was obtained by multiplying the measured organic carbon concentration by 2.0, a correction factor that takes into account the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. The mass concentrations of ammonium, nitrate, and sulfate concentrations as well as the total mass of the aerosols were measured. A reasonable mass balance was found for each of the aerosols. The largest secondary organic aerosol yield of 1.59±0.40% was found for toluene at an organic aerosol concentration of 8.2 μm−3, followed by 1.09±0.27% for p-xylene at 6.4 μg m−3, and 0.41±0.10% for 1,3,5-trimethylbenzene at 2.0 μg m−3. In general, these results agree with those reported by Odum et al. and appear to be consistent with the gas–aerosol partitioning theory developed by Pankow. The presence of organic in the aerosol did not affect significantly the hygroscopic properties of the aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号