首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

2.
The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2–45 cfu m−3 90% of the concentrations being <15 cfu m−3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2–2470 cfu m−3), only about 20% of the samples exceeded 100 cfu m−3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m−3 in the control buildings and from 14 to 1550 cfu m−3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m−3 in office buildings in winter and fungi levels are <50 cfu m−3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.  相似文献   

3.
A preliminary study of ambient carbonyls was performed in Xalapa City to measure carbonyls in the atmosphere of this City, because it has an explosive increase in population and traffic density, but few industries. The city is located at the eastern flanks of the Sierra Madre Oriental, between 1350 and 1550 m above sea level. Acetone was the most abundant carbonyl in June, followed by formaldehyde and acetaldehyde, whereas acetaldehyde was the most abundant one in November. Higher concentrations were observed in autumn than in spring, probably due to stagnation conditions in autumn and heavy rains from late spring to early autumn. The very high concentrations of acetaldehyde found in November could have been caused by an accidental leak or spill from a truck, since no stationary sources were identified and acetaldehyde concentrations steeply rose and constantly decreased after few days. Moreover, a highly transited highway traverses Xalapa. The most important ozone and carbon monoxide concentrations were below the Mexican Air Quality Standards; 216 μg m−3 (0.11 ppm) for 1 h average and 12.6 mg m−3 (11 ppm) for 8 h moving average, respectively. The low concentrations of the main carbonyls, compared with the values reported for other urban areas, and of carbon monoxide, seem to indicate that air quality is still satisfactory in Xalapa City.  相似文献   

4.
The temporal and spatial distributions of boundary-layer ozone were studied during June 2000 at Summit, Greenland, using surface-level measurements and vertical profiling from a tethered balloon platform. Three weeks of continuous ozone surface data, 133 meteorological vertical profile data and 82 ozone vertical profile data sets were collected from the surface to a maximum altitude of 1400 m above ground.The lower atmosphere at Summit was characterized by the prevalence of strong stable conditions with strong surface temperature inversions. These inversions reversed to neutral to slightly unstable conditions between ∼9.00 and 18.00 h local time with the formation of shallow mixing heights of ∼70–250 m above the surface.The surface ozone mixing ratio ranged from 39 to 68 ppbv and occasionally had rapid changes of up to 20 ppb in 12 h. The diurnal mean ozone mixing ratio showed diurnal trends indicating meteorological and photochemical controls of surface ozone. Vertical profiles were within the range of 37–76 ppb and showed strong stratification in the lower troposphere. A high correlation of high ozone/low water vapor air masses indicated the transport of high tropospheric/low stratospheric air into the lower boundary layer. A ∼0.1–3 ppb decline of the ozone mixing ratio towards the surface was frequently observed within the neutrally stable mixed layer during midday hours. These data suggest that the boundary-layer ozone mixing ratio and ozone depletion and deposition to the snowpack are influenced by photochemical processes and/or transport phenomena that follow diurnal dependencies. With 37 ppb of ozone being the lowest mixing ratio measured in all data no evidence was seen for the occurrence of ozone depletion episodes similar to those that have been reported within the boundary layer at coastal Arctic sites during springtime.  相似文献   

5.
Epidemiological studies are consistently reporting an association between fine particulate pollution and ill-health. Motor vehicle emissions are considered to be the main source of fine particles in ambient urban air of cities which are not directly influenced by industrial emissions. The aim of this work was to assess the influence of a major arterial road on concentration levels of airborne fine particles in its vicinity. Measurements of over 500 particle size distributions in the particle size range 16–626 nm, were made using two scanning mobility particle sizers (SMPS). A subsequent comparison of the recorded values from differing locations is discussed, with reference made to topographic and climatic influences. Both horizontal and vertical profile measurements of fine particle number size distributions are described; the combination of the two yielding information as to the relative exposures of occupants of buildings in the vicinity of a major arterial route. With the exception of measurements in close proximity to the freeway (about 15 m), the horizontal profile measurements did not provide any evidence of a statistically significant difference in fine particle number concentration with respect to distance at ground level up to a distance of 200 m within the study area. The vertical profile measurements also revealed no significant correlation between particle concentration and height. However, for buildings in the immediate proximity to the arterial road (about 15 m) concentrations around the building envelope are very high, comparable to those in the immediate vicinity of the road, indicating undiluted concentrations drawn directly from the freeway. This finding has a significant implication for management of indoor air quality in the buildings located in the immediate vicinity of major roads.  相似文献   

6.
A simplified hybrid statistical-deterministic chemistry-transport model, is used in real time for the prediction of ozone in the area of Paris during Summer 1999. We present here a statistical validation of this experiment. We distinguish the forecasts in the urban area from forecasts in the pollution plume downwind of the city. The validation of model forecasts, up to 3 days ahead, is performed against ground based observations within and up to 50 km outside of Paris. In the urban area, ozone levels are fairly well forecast, with correlation coefficients between forecast and observations ranging between 0.7 and 0.8 and root mean square errors in the range 15–20 μg m−3 at short lead times. While the bias of urban forecast is very low, the largest peaks are somehow underestimated. The ozone plume amplitude is generally well reproduced, even at long lead times (root mean square errors of about 20–30 μg m−3), while the direction of the plume is only captured at short lead times (about 70% of the time). The model has difficulties in forecasting the direction of the plume under stagnant weather conditions. We estimate the model ability to forecast concentrations above 180 μg m−3, which are of practical relevance to air quality managers. It is found that about 60% of these events are well forecast, even at long lead times, while the exact monitoring station where the exceedance is observed can only be forecast at short lead times. Finally, we found that about half of the forecast error is due to the error in the estimation of the boundary conditions, which are forecast by a simple linear regression model here.  相似文献   

7.
As air infiltrates through unintentional openings in building envelopes, pollutants may interact with adjacent surfaces. Such interactions can alter human exposure to air pollutants of outdoor origin. We present modeling explorations of the proportion of particles and reactive gases (e.g., ozone) that penetrate building envelopes as air enters through cracks and wall cavities. Calculations were performed for idealized rectangular cracks, assuming regular geometry, smooth inner crack surface and steady airflow. Particles of 0.1–1.0 μm diameter are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or larger, assuming a pressure difference of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles are significantly removed by means of gravitational settling and Brownian diffusion, respectively. In addition to crack geometry, ozone penetration depends on its reactivity with crack surfaces, as parameterized by the reaction probability. For reaction probabilities less than ∼10−5, penetration is complete for cracks heights greater than ∼1 mm. However, penetration through mm scale cracks is small if the reaction probability is ∼10−4 or greater. For wall cavities, fiberglass insulation is an efficient particle filter, but particles would penetrate efficiently through uninsulated wall cavities or through insulated cavities with significant airflow bypass. The ozone reaction probability on fiberglass fibers was measured to be 10−7 for fibers previously exposed to high ozone levels and 6×10−6 for unexposed fibers. Over this range, ozone penetration through fiberglass insulation would vary from >90% to ∼10–40%. Thus, under many conditions penetration is high; however, there are realistic circumstances in which building envelopes can provide substantial pollutant removal. Not enough is yet known about the detailed nature of pollutant penetration leakage paths to reliably predict infiltration into real buildings.  相似文献   

8.
Land use and pollutant emission changes can have significant impacts on air quality, regional climate, and human health. Here we describe a modeling study aimed at quantifying the potential effects of extensive changes in urban land cover in the New York City (NYC), USA metropolitan region on surface meteorology and ozone (O3) concentrations. The SLEUTH land-use change model was used to extrapolate urban land cover over this region from “present-day” (ca. 1990) conditions to a future year (ca. 2050), and these projections were subsequently integrated into meteorological and air quality simulations. The development of the future-year land-use scenario followed the narrative of the “A2” scenario described by the Intergovernmental Panel on Climate Change (IPCC), but was restricted to the greater NYC area. The modeling system consists of the Penn State/NCAR MM5 mesoscale meteorological model; the Sparse Matrix Operator Kernal Emissions processing system; and the US EPA Community Multiscale Air Quality model, and simulations were performed for two 18-day episodes, one near-past and one future. Our results suggest that extensive urban growth in the NYC metropolitan area has the potential to increase afternoon near-surface temperatures by more than 0.6 °C and planetary boundary layer (PBL) heights by more than 150 m, as well as decrease water vapor mixing ratio by more than 0.6 g kg−1, across the NYC metropolitan area, with the areal extent of all of these changes generally coinciding with the area of increased urbanization. On the other hand, the impacts of these land use changes on ozone concentrations are more complex. Simulation results indicate that future changes in urbanization, with emissions held constant, may lead to increases in episode-average O3 levels by about 1–5 ppb, and episode-maximum 8 h O3 levels by more than 6 ppb across much of the NYC area. However, spatial patterns of ozone changes are heterogeneous and also indicate the presence of areas with decreasing ozone concentrations. When anthropogenic emissions were increased to be consistent with the extensive urbanization in the greater NYC area, the O3 levels increased in outer counties of the metropolitan region but decreased in others, including coastal Connecticut and the Long Island Sound area.  相似文献   

9.
The role of vertical atmospheric transport (VAT) for a winter ozone episode (January 1988) in the Alps, observed both on the mountain crest (3580 m asl) and in the lee of the Alps (209 m asl), is investigated. Numerical simulations were carried out with a doubly nested mesoscale model (14 km horizontal resolution), characterised by a refined orography scheme. A comparison between the modelled vertical profiles with features observed in the aerological soundings over Payerne indicated that the model is able to reproduce the fold in the Alps down to 650 hPa. Frictional processes are found to be responsible for the fragmentation of the lower parts of the fold when it is advected over the mountains, thus enhancing ozone concentrations at the mountain crest with likely cross-tropopause mixing. Vertically propagating gravity waves and strong mesoscale vertical winds (nordfoehn) are responsible for the further downward transport of ozone-rich air to the lower troposphere. This mechanism leads to ozone concentrations up to 70 ppb(v) in the leeside. The study is important because tropospheric ozone trends in the lee of the Alps have been inferred, in the past, from ozone peaks associated with such nordfoehn conditions. It is now shown that nordfoehn may entrain air which has been recently exchanged across the tropopause.  相似文献   

10.
Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m−2, with most of the carbonyls being of lower molecular weight (C1–C4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m−2, with a greater fraction of the BOBPs being heavier carbonyls (C5–C9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.  相似文献   

11.
This study investigates the levels of particulate matter smaller than 2.5 μm (PM2.5) and some selected volatile organic compounds (VOCs) at 12 photocopy centers in Taiwan from November 2004 to June 2005. The results of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) measurements indicated that toluene had the highest concentration in all photocopy centers, while the concentration of the other four compounds varied among the 12 photocopy centers. The average background-corrected eight-hour PM2.5 in the 12 photocopy centers ranged from 10 to 83 μg m−3 with an average of 40 μg m−3. The 24-h indoor PM2.5 at the photocopy centers was estimated and at two photocopy centers exceeded 100 μg m−3, the 24-h indoor PM2.5 guideline recommended by the Taiwan EPA. The ozone level and particle size distribution at another photocopy center were monitored and indicated that the ozone level increased when the photocopying started and the average ozone level at some photocopy centers during business hour may exceed the value (50 ppb) recommended by the Taiwan EPA. The particle size distribution monitored during photocopying indicated that the emitted particles were much smaller than the original toner powders. Additionally, the number concentration of particles that were smaller than 0.5 μm was found to increase during the first hour of photocopying and it increased as the particle size decreased. The ultrafine particle (UFP, <100 nm) dominated the number concentration and the peak concentration appeared at sizes of under 50 nm. A high number concentration of UFP was found with a peak value of 1E+8 particles cm−3 during photocopying. The decline of UFP concentration was observed after the first hour and the decline is likely attributable to the surface deposition of charged particles, which are charged primarily by the diffusion charging of corona devices in the photocopier. This study concludes that ozone and UFP concentrations in photocopy centers should be concerned in view of indoor air quality and human health. The corona devices in photocopiers and photocopier-emitted VOCs have the potential to initiate indoor air chemistry during photocopying and result in the formation of UFP.  相似文献   

12.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

13.
Intensive aircraft- and ground-based measurements of ultrafine to supermicron particles in the Osaka metropolitan area, Japan, were carried out on 17–19 March 2003, in order to investigate vertical profiles of size-resolved particles in the urban atmosphere. Differently sized particles were observed at different altitudes on 19 March. Relatively higher concentrations of ultrafine particles (31 nm) and submicron particles (0.3–0.5 μm) were measured (100–200 cm−3) at altitudes of 300 and 600 m, whereas supermicron particles (2–5 μm) were present (300–600 cm−3) at higher altitudes (1300 m in the morning and 2200 m in the afternoon). The chemical composition analysis showed that supermicron particles evidently comprised mainly soil particles mixed internally with anthropogenic species such as carbonaceous components and sulfate. Numerical simulation using the Chemical weather FORecasting System (CFORS) suggested the long-range transport of soil dust and black carbon from the Asian continent. Total number concentrations of particles sized 10–875 nm ranged from 4.8×103 to 3.0×104 cm−3 at an altitude of 300 m and from 7.3×102 to 4.8×103 cm−3 at an altitude of 1300 m. Total number concentrations of particles sized 10–875 nm correlated very well with NOX concentrations, and, therefore, ultrafine and submicron particles were likely emitted from urban activities such as car traffic and vertically transported. Number size distributions at lower altitudes obtained by aircraft measurements were similar to those obtained by ground measurements, with modal diameters of 20–30 nm on 18 March and about 50 nm on 19 March.  相似文献   

14.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibbes (35.78°N, 82.29°W, 2006 m MSL). The air mass origin was determined using 48-h back trajectories obtained from the hybrid single-particle Lagrangian integrated trajectory model. The highest average concentration is seen in polluted continental air masses and the lowest in marine air masses. During the winter, the overall average BC value was 74.1 ng m−3, whereas the overall summer mean BC value is higher by a factor of 3. The main reason for the seasonal difference may be enhanced thermal convection during summer, which increases transport of air pollutants from the planetary boundary layer of the surrounding urban area to this rural site. In the spring of 1998, abnormally high BC concentrations from the continental sector were measured. These concentrations were originating from a biomass burning plume in Mexico. This was confirmed by the observations of the Earth probe total ozone mapping spectrometer. The BC average concentrations of air masses transported from the polluted continental sector during summer are low on Sunday to Tuesday with a minimum value of 256 ng m−3 occurring on Monday, and high on Wednesday to Friday with a maximum value of 379 ng m−3 occurring on Friday. The net aerosol radiative forcing (scattering effects plus absorption effects) per unit vertical depth at 2006 m MSL is calculated to be −1.38×10−3 W m−3 for the southeastern US. The magnitude of direct radiative forcing by aerosol scattering is reduced by 15±7% due to the BC absorption.  相似文献   

15.
Even though dry deposition and air–water exchange of semivolatile organic compounds (SOCs) are important for surfaces in and around the urban areas, there is still no generally accepted direct measurement technique for dry deposition. In this study, a modified water surface sampler (WSS) configuration, including a filter holder and an XAD-2 resin column, was employed to investigate the polycyclic aromatic hydrocarbon (PAH) dry deposition in an urban area. The measured total (particle+dissolved) PAH fluxes to the WSS averaged to be 34 960±16 540 ng m−2 d−1. Average particulate PAH flux, determined by analyzing the filter in the WSS, was about 8% of the total PAH flux. Temporal flux variations indicated that colder months (October–April) had the highest PAH fluxes. This increase could be attributed to the residential heating as well as meteorological effects including lower mixing height. A high volume air sampler was concurrently employed to collect ambient air concentrations. The average total (gas+particle) atmospheric PAH concentration (456±524 ng m−3) was within the range of previously measured values at different urban locations. PAH concentrations in urban areas are more than two orders of magnitude higher than those measured in pristine areas and this result may indicate that urban areas have major source sectors and greater deposition rates are expected near to these areas. The average contribution of particle phase was about 10% in total concentration. Simultaneous particulate phase dry deposition and ambient air samples were collected in this study. Then, particulate phase apparent dry deposition velocities were calculated using the fluxes and concentrations for each PAH compound and they ranged from 0.1 to 1.2 cm s−1. These values are in good agreement with previously reported values.  相似文献   

16.
Surface ozone records from ten polar research stations were investigated for the dependencies of ozone on radiative processes, snow-photochemisty, and synoptic and stratospheric transport. A total of 146 annual data records for the Arctic sites Barrow, Alaska; Summit, Greenland; Alert, Canada; Zeppelinfjellet, Norway; and the Antarctic stations Halley, McMurdo, Neumayer, Sanae, Syowa, and South Pole were analyzed. Mean ozone at the Northern Hemisphere (NH) stations (excluding Summit) is ∼5 ppbv higher than in Antarctica. Statistical analysis yielded best estimates for the projected year 2005 median annual ozone mixing ratios, which for the Arctic stations were 33.5 ppbv at Alert, 28.6 ppbv at Barrow, 46.3 ppbv ppb at Summit and 33.7 ppbv at Zeppelinfjellet. For the Antarctic stations the corresponding ozone mixing ratios were 21.6 ppbv at Halley, 27.0 ppbv at McMurdo, 24.9 ppbv at Neumayer, 27.2 ppbv at Sanae, 29.4 ppbv at South Pole, and 25.8 ppbv at Syowa. At both Summit (3212 m asl) and South Pole (2830 m asl), annual mean ozone is higher than at the lower elevation and coastal stations. A trend analysis revealed that all sites in recent years have experienced low to moderate increases in surface ozone ranging from 0.02 to 0.26 ppbv yr−1, albeit none of these changes were found to be statistically significant trends. A seasonal trend analysis showed above-average increases in ozone during the spring and early summer periods for both Arctic (Alert, Zeppelinfjellet) and Antarctic (McMurdo, Neumayer, South Pole) sites. In contrast, at Barrow, springtime ozone has been declining. All coastal stations experience springtime episodes with rapid depletion of ozone in the boundary layer, attributable to photochemically catalyzed ozone depletion from halogen chemistry. This effect is most obvious at Barrow, followed by Alert. Springtime depletion episodes are less pronounced at Antarctic stations. At South Pole, during the Antarctic spring and summer, photochemical ozone production yields frequent episodes with enhanced surface ozone. Other Antarctic stations show similar, though less frequent spring and summertime periods with enhanced ozone. The Antarctic data provide evidence that austral spring and summertime ozone production in Antarctica is widespread, respectively, affects all stations at least through transport events. This ozone production contributes to a several ppbv enhancement in the annual mean ozone over the Antarctic plateau; however, it is not the determining process in the Antarctic seasonal ozone cycle. Although Summit and South Pole have many similarities in their environmental conditions, this ozone production does not appear to be of equal importance at Summit. Amplitudes of diurnal, summertime ozone cycles at these polar sites are weaker than at lower latitude locations. Amplitudes of seasonal ozone changes are larger in the Southern Hemisphere (by ∼5 ppbv), most likely due to less summertime photochemical ozone loss and more transport of ozone-rich air to the Arctic during the NH spring and summer months.  相似文献   

17.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

18.
The characteristics and concentrations of volatile organic compounds (VOCs) in the roadside microenvironments of metropolitan Hong Kong were investigated. The VOC concentrations, especially toluene, benzene and chlorinated VOCs in Hong Kong were high when compared with those in most developed cities. The average and maximum concentration of toluene was 74.9 and 320.0 μg m−3, respectively. The respective values for benzene were 25.9 and 128.6 μg m−3. The chlorinated VOCs were dominated by trichloroethylene and tetrachloroethylene. The maximum concentrations of these two species reached 248.2 and 144.0 μg m−3, respectively. There were strong variations in the spatial fluctuation and characteristic of VOC concentrations. The highest VOC concentrations were found in the industrial district, which were followed by those in the commercial district, the central business district and finally the residential district. The highest concentrations of most VOC species, especially chlorinated VOC were found in the industrial and commercial districts. The average benzene/toluene ratio in Hong Kong was 0.5 suggesting that vehicular emission was the dominant VOC source in most areas of Hong Kong. There were strong deviations in benzene/toluene, benzene/ethylbenzene and benzene/(m+p-xylene) ratios in the commercial district, and highly chlorinated VOC in the industrial and commercial districts. These suggest that there were other benzene and VOC sources overlying on the high background VOC concentrations in these districts. The common usage of organic solvents in the building and construction industries, and in the small industries in the industrial and commercial districts were believed to be important sources of VOC in Hong Kong.  相似文献   

19.
The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NOx). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s?1 m?2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.  相似文献   

20.
Continuous measurements of ozone vertical profiles, OVP, in the low troposphere (around 500–2400 m) using an unattended commercial ozone profiler DIAL, were conducted during June–July 2004 in Segovia, SG, a small city in the upper plateau located close to the foothills of the Guadarrama mountain range, Guadarrama, in the Central Massif. The data obtained over almost 37 complete days have enabled us to characterise the ozone vertical exchange, describe the phenomenology of the main ozone peaks, OP, recorded in the city and their relationship with ozone transport/formation from the gas precursor emissions of the greater Madrid area across Guadarrama. To achieve the last objective concurrent measurements of ground-level ozone in SG and a representative monitoring station upwind from Guadarrama, Buitrago de Lozoya, BL, have been used. 72.2% of the concurrent maximum diurnal ozone peaks exceeding the 95 percentile hourly value in SG (OPSG) and BL (OPBL) were linked to ozone transport and formation from the greater Madrid area towards Guadarrama. An estimate of the contribution of the greater Madrid area on OPSG yielded 28 μg m−3.The most prominent ozone vertical stratification was linked to the mixing height, MH, and a frequent nocturnal stable layer formed, NSL. Three small ozone enriched-layers were identified at mean heights of 500, 700 and 1000 m, respectively. Ozone tended to decline versus altitude. The hourly patterns of the three layers showed two peak occurrences of similar amplitude in the early morning, 7–8 h, and mid-afternoon, 14–16 h. A minimum was also observed during daytime, 10–11 h, its origin being attributed to a dilution process induced by the “chimney effect” caused by the slopes heating during this period.The comparison between OPSG, and the maximum diurnal ozone peaks in the first layer, OL1P, showed a satisfactory relationship, correlation coefficient, r, of the linear fit 0.77, and comparable mean values, 127 and 130 μg m−3, respectively, revealing the presence of an uniform ozone vertical distribution in the 500 m atmospheric layer above ground level during mid-afternoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号