首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined hourly emissions of isoprene, monoterpenes and sesquiterpenes from Siberian larch, one of the major tree species in Siberian forests. Summer volatile organic compounds (VOCs) emission from Siberian larch consisted mainly of monoterpenes (about 90%). The monoterpene emission spectrum remained constant during the measurement period, almost half was sabinene and other major monoterpenes were Δ3-carene, β- and α-pinene. During spring and summer, about 10% of the VOCs were sesquiterpenes, mainly α-farnesene. The sesquiterpene emissions declined to 3% in the fall. Isoprene, 2-methyl-3-buten-2-ol (MBO) and 1,8-cineole contributed to less than 3% of the VOC emission during the whole period. The diurnal variation of the emissions could be explained using a temperature-dependent parameterization. Emission potentials normalized to 30 °C were 5.2–21 μg gdw−1 h−1 (using β-value of 0.09 °C−1) for monoterpenes and 0.4–1.8 μg gdw−1 h−1 (using β-value of 0.143 °C−1, mean of determined values) for sesquiterpenes. Normalized monoterpene emission potentials were highest in late summer and elevated again in late fall. Sesquiterpene emission potentials were also highest in late summer, but decreased towards fall.  相似文献   

2.
The emission of isoprene (2-methyl-1,3-butadiene) by terrestrial vegetation is an important biosphere–atmosphere exchange which significantly impacts tropospheric chemistry. Isoprene emissions from Chapman oak (Quercus chapmanii) grown for over two years in elevated CO2 levels were measured and compared to emissions from trees grown in ambient CO2 levels in identical open-topped chambers, and emissions from ambient-grown trees were compared to emissions from trees grown in chamberless control plots. Emission rates were adjusted to 30 μmol m−2 s−1 of light intensity and 30°C, and standard T-tests were performed to compare emission rates. No significant differences in isoprene emission were found in ambient vs. elevated CO2 grown trees, while emissions from ambient vs. control trees showed a significant chamber effect.  相似文献   

3.
The emission of isoprene has been studied from a forest of Abies Borisii-regis, a Mediterranean fir species previously thought to emit only monoterpenes. Emission studies from two independent enclosure experiments indicated a standardised isoprene emission rate of (18.4±3.8) μg gdry-weight−1 h−1, similar in magnitude to species such as eucalyptus and oak which are considered to be strong isoprene emitters. Isoprene emission depended strongly on both leaf temperature (2°C–34°C) and photosynthetically active radiation (PAR) below 250 μmol m−2 s−1, becoming saturated with respect to PAR above this value. The annual isoprene emission rate was estimated to be (132±29) kT yr−1 for those trees growing within Greece, comparable to current estimates of the total isoprene budget of Greece as a whole, and contributing significantly to regional ozone and carbon monoxide budgets. Monoterpene emission exhibited exponential temperature dependence, with 1,8-cineole, α-pinene, β-pinene and limonene forming the primary emissions. A standardised total monoterpene emission rate of (2.7±1.1) μg gdry-weight−1 h−1 was calculated, corresponding to an annual monoterpene emission rate of (24±12) kT yr−1. Research was conducted as part of the AEROBIC’97 (AEROsol formation from BIogenic organic Carbon) series of field campaigns.  相似文献   

4.
Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10–1300 μmol m−2 s−1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33–66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)−1 h−1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)−1 h−1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.  相似文献   

5.
Isoprene emission rates of 64 plant species found in California's urban and natural landscapes were measured using a dynamic flow-through chamber enclosure technique. Species were selected to provide data for previously unmeasured species and to test estimates of isoprene emission rates based upon taxonomic relationships developed for compilation of biogenic emission inventories as proposed by Benjamin et al. (1996, Atmospheric Environment 30, 1437–1452). Branch-level isoprene emission rates ranged from undetectable for 47 species, to 54 μg g−1 h−1 for Quercus kelloggii, California black oak. Isoprene emission rate estimates based on taxonomy agreed well with our measurements for species within the same genus, with the exception of the Quercus genus for which a wide range of isoprene emission rates have been reported. As expected, family-level estimates based on taxonomy showed greater deviation from our measured values than did genus-based estimates. The data developed in the present study support use of a taxonomic predictive methodology, especially if previous measurements within specific families, sub-families, and genera are extensive, and the results of such assignment are treated with proper caution. A taxonomic approach may be most useful where plant species in natural and urban landscapes are numerous, such as in California, where no experimental measurements are available for thousands of species.  相似文献   

6.
Canopy scale emissions of isoprene and monoterpenes from Amazonian rainforest were measured by eddy covariance and eddy accumulation techniques. The peak mixing ratios at about 10 m above the canopy occurred in the afternoon and were typically about 90 pptv of α-pinene and 4–5 ppbv of isoprene. α-pinene was the most abundant monoterpene in the air above the canopy comprising ≈50% of the total monoterpene mixing ratio. Measured isoprene fluxes were almost 10 times higher than α-pinene fluxes. Normalized conditions of 30°C and 1000 μmol m−2 s−1 were associated with an isoprene flux of 2.4 mg m−2 h−1 and a β-pinene flux of 0.26 mg m−2 h−1. Both fluxes were lower than values that have been specified for Amazon rainforests in global emission models. Isoprene flux correlated with a light- and temperature-dependent emission activity factor, and even better with measured sensible heat flux. The variation in the measured α-pinene fluxes, as well as the diurnal cycle of mixing ratio, suggest emissions that are dependent on both light and temperature. The light and temperature dependence can have a significant effect on the modeled diurnal cycle of monoterpene emission as well as on the total monoterpene emission.  相似文献   

7.
The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m−2 s−1 PAR), low emitting species (Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g−1 dw h−1, a medium emitter (Pinus pinea) emitted between 5 and 10 μg (C) g−1 dw h−1 and high emitters (Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g−1 dw h−1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.  相似文献   

8.
Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina, Central California, and Northern Oregon. Emissions from several sun leaves of each species were measured at or near standard conditions (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m−2 s−1) using environmentally controlled cuvette systems and gas chromatography with reduction gas detectors. Species mean emission capacity ranged from 39 to 158 μg C g−1 h−1 (mean of 86), or 22 to 79 nmol m−2 s−1 (mean of 44). These rates are 2–28 times higher than those previously reported from the same species, which were summarized in a recent study where isoprene emission rates were assigned based on published data and taxonomy. These discrepancies were attributed to differences in leaf environment during development, measurement technique (branch or plant enclosure versus leaf enclosure), and lack of environmental measurements associated with some of the earlier branch enclosure measurements. Mass-based emission capacities for 15 of 18 oak species, sweetgum (Liquidambar styraciflua), and poplars (Populus trichocarpa and P. deltoides) were within ranges used in current biogenic volatile organic compound (BVOC) emission models, while measured rates for the remaining three oak species, Nyssa sylvatica, Platanus occidentalis, Robinia pseudoacacia, Salix nigra, and Populus hybrids (Populus trichocarpa × P. deltoides) were considerably higher. In addition, mean specific leaf mass of the oak species was 30% higher than assumed in current emission models. Emission rates reported here and in other recent studies support recent conclusions that isoprene emission capacities for sun leaves of high emitting species may be better represented by a value of 100±50 μg C g−1 h−1 during hot summer conditions. We also find that intermediate isoprene emission rates previously suggested for some tree species may not represent their true emission capacities, and that broadleaf plant species may have either low (<1.0 μg C g−1 h−1) or very high (∼100 μg C g−1 h−1) genetic capacity to emit isoprene when mature foliage is exposed to a high ambient temperature and light environment.  相似文献   

9.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

10.
Acetone is a ubiquitous component of the atmosphere which, by its photolysis, can play an important role in photochemical reactions in the free troposphere. This paper investigates the biogenic source of acetone from Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in the Scandinavian boreal zone. Branch emission measurements of acetone, monoterpenes, and isoprene were made with an all-Teflon flow-through branch chamber from five specimens of Scots pine at three sites in Sweden and Finland, and from one specimen of Norway spruce at one site in Sweden. Acetone samples were taken with SepPak™ DNPH cartridges, monoterpenes with Tenax TA, and isoprene with 3 l electropolished canisters. Acetone was found to dominate the carbonyl emission of both Scots pine and Norway spruce, as large as the monoterpene emissions and for Norway spruce, as the isoprene emission. The average standard emission rate (30°C) and average β-coefficient for the temperature correlation for 5 specimens of Scots pine were 870 ng C gdw−1 h−1 (gdw=gram dry weight) and 0.12, respectively. For the monoterpenes the values were 900 ng C gdw−1 h−1 and 0.12, respectively. The standard emission rate (30°C) for acetone from Norway spruce was 265 ng C gdw−1 h−1, but the sparsity of data, along with the unusual weather conditions at the time of the measurements, precludes the establishment of a summertime best estimate emission factor.  相似文献   

11.
Isoprene fluxes from a Salix viminalis (willow) plantation in western Sweden were measured using the relaxed eddy accumulation (REA) technique. Fluxes of up to 0.23 μg m−2 s−1 could be observed. A standard emission factor at 303 K and a PAR flux of 1000 μ mol m−2 s−1 was estimated to 0.98 μg m−2 s−1 by using the G93 algorithm. The chemistry of an air parcel passing over a willow coppice plantation was investigated utilising a Lagrangian box model in which the measured isoprene fluxes were used as input data. Dispersion after the field was accounted for by a procedure based on the Gaussian plume model. The calculations indicate that, in most cases, the isoprene emissions have a small effect on the local air quality.  相似文献   

12.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

13.
Gaseous methane (CH4) emissions from a swine waste holding lagoon were determined periodically during the year. Micrometeorological techniques were used in order that emission rates from the lagoon were measured under ambient conditions with little disturbance to the natural environment. During the cold winter measurement period, CH4 fluxes were linearly related to lagoon water temperature below 22°C (r=0.87). During warmer measurement periods, both water and air temperatures and windspeed affected emissions rates. In general, flux rates followed a diurnal pattern with greater fluxes during the day when both temperature and windspeed were greatest. Mathematical models using air and water temperature and windspeed factors could explain 47 to 75% of the variation in fluxes. Daily emission rates ranged from 1 to 500 kg CH4 ha−1 d−1. The average flux for the year was 52.3 kg CH4 ha−1 d−1 which corresponded to about 5.6 kg CH4 animal−1 yr−1 from the primary lagoon.  相似文献   

14.
We measured the soil and leaf CO2 exchange in Quercus ilex and Phillyrea latifolia seasonally throughout the year in a representative site of the Mediterranean region, a natural holm oak forest growing in the Prades Mountains in southeastern Catalonia. In the wet seasons (spring and autumn), we experimentally decreased soil moisture by 30%, by excluding rainfall and water runoff in 12 plots, 1×10 m, and left 12 further plots as controls. Our aim was to predict the response of these gas exchanges to the drought forecasted for the next decades for this region by GCM and ecophysiological models.Annual average soil CO2 exchange rate was 2.27±0.27 μmol CO2 m−2 s−1. Annual average leaf CO2 exchange rates were 8±1 and 5±1 μmol m−2 s−1 in Q. ilex and P. latifolia, respectively. Soil respiration rates in control treatments followed a seasonal pattern similar to photosynthetic activity. They reached maximum values in spring and autumn (2.5–3.8 μmol m−2 s−1 soil CO2 emission rates and 7–15 μmol m−2 s−1 net photosynthetic rates) and minimum values (almost 0 for both variables) in summer, showing that soil moisture was the most important factor driving the soil microbial activity and the photosynthetic activity of plants. In autumn, drought treatment strongly decreased net photosynthesis rates and stomatal conductance of Q. ilex by 44% and 53%, respectively. Soil respiration was also reduced by 43% under drought treatment in the wet seasons. In summer there were larger soil CO2 emissions in drought plots than in control plots, probably driven by autotrophic (roots) metabolism. The results indicate that leaf and soil CO2 exchange may be strongly reduced (by ca. 44%) by the predicted decreases of soil water availability in the next decades. Long-term studies are needed to confirm these predictions or to find out possible acclimation of those processes.  相似文献   

15.
Land spreading nitrogen-rich municipal waste biosolids (NO3-N<256 mg N kg−1 dry weight, NH3-N∼23,080 mg N kg−1 dry weight, Total Kjeldahl N∼41,700 mg N kg−1 dry weight) to human food and non-food chain land is a practice followed throughout the US. This practice may lead to the recovery and utilization of the nitrogen by vegetation, but it may also lead to emissions of biogenic nitric oxide (NO), which may enhance ozone pollution in the lower levels of the troposphere. Recent global estimates of biogenic NO emissions from soils are cited in the literature, which are based on field measurements of NO emissions from various agricultural and non-agricultural fields. However, biogenic emissions of NO from soils amended with biosolids are lacking. Utilizing a state-of-the-art mobile laboratory and a dynamic flow-through chamber system, in-situ concentrations of nitric oxide (NO) were measured during the spring/summer of 1999 and winter/spring of 2000 from an agricultural soil which is routinely amended with municipal waste biosolids. The average NO flux for the late spring/summer time period (10 June 1999–5 August 1999) was 69.4±34.9 ng N m−2 s−1. Biosolids were applied during September 1999 and the field site was sampled again during winter/spring 2000 (28 February 2000–9 March 2000), during which the average flux was 3.6±1.7 ng N m−2 s−1. The same field site was sampled again in late spring (2–9 June 2000) and the average flux was 64.8±41.0 ng N m−2 s−1. An observationally based model, developed as part of this study, found that summer accounted for 60% of the yearly emission while fall, winter and spring accounted for 20%, 4% and 16% respectively. Field experiments were conducted which indicated that the application of biosolids increases the emissions of NO and that techniques to estimate biogenic NO emissions would, on a yearly average, underestimate the NO flux from this field by a factor of 26. Soil temperature and % water filled pore space (%WFPS) were observed to be significant variables for predicting NO emissions, however %WFPS was found to be most significant during high soil temperature conditions. In the range of pH values found at this site (5.8±0.3), pH was not observed to be a significant parameter in predicting NO emissions.  相似文献   

16.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

17.
During a measurement period from June till November 2004, ammonia fluxes above non-fertilized managed grassland in The Netherlands were measured with a Gradient Ammonia—High Accuracy—Monitor (GRAHAM). Compared with earlier ammonia measurement systems, the GRAHAM has higher accuracy and a quality control system.Flux measurements are presented for two different periods, i.e. a warm, dry summer period (from 18 July till 15 August) and a wet, cool autumn period (23 September till 23 October). From these measurements canopy compensation points were derived. The canopy compensation point is defined as the effective surface concentration of ammonia. In the summer period (negative) deposition fluxes are observed in the evening, night and early morning due to leaf surface wetness, while in the afternoon emission fluxes are observed due to high canopy compensation points. The mean NH3-flux in this period was 4 ng m−2 s−1, which corresponds to a net emission of 0.10 kg N ha−1 over the 28 day sampling period. The NH3-flux in the autumn period mainly shows (negative) deposition fluxes due to small canopy compensation points caused by low temperatures and a generally wet surface. The mean NH3-flux in this period is −24 ng m−2 s−1, which corresponds to a net deposition of 0.65 kg N ha−1 over the 31 day sampling period.Frequency distributions of the NH3-concentration and flux show that despite higher average ambient NH3-concentrations (13.3 μg m−3 in the summer period vs. 6.4 μg m−3 in the autumn period) there are more emission events in the summer period than in the autumn period (about 50% of the time in summer vs. 20% in autumn). This is caused by the high canopy compensation points in summer due to high temperatures and a dry surface. In autumn, deposition dominates due to a generally wet surface that induces low canopy compensation points.For our non-fertilized agricultural grassland site, the derived canopy compensation points (at temperatures between 7 and 29 °C) varied from 0.5 to 29.7 μg m−3 and were on an average 7.0 μg m−3, which is quite high for non-fertilized conditions and probably caused by high nitrogen inputs in the past or high dry deposition amounts from local sources. The average value for the ratio between NH4+ and H+ concentration in the canopy, Γc, that was derived from our data was 2200.  相似文献   

18.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

19.
In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m−2 h−1. An annual emission of ∼8.7×104 g of mercury to the atmosphere was calculated for the 586 km2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m−2 h−1) by an order of magnitude.  相似文献   

20.
Real-world vehicle emissions of carbonyls were determined in summer and winter of 2003 at the Shing Mun Tunnel, Hong Kong. Fifteen carbonyl species have been analyzed in this study. The total measured carbonyls emission factors ranged from 21.7 to 68.9 mg veh−1 km−1 among different measurement periods, with an average of 35.8±11.9 mg veh−1 km−1. Higher carbonyl emissions were found to be associated with a high proportion of diesel-fueled vehicles. Total measured carbonyl emissions from Diesel-fueled Vehicle (DV, 71.5 mg veh−1 km−1) were about 7 times higher than those from Non-Diesel-fueled Vehicle (NDV, 10 mg veh−1 km−1). The five carbonyls with the largest DV emission factor were, in decreasing order, formaldehyde (38.3 mg veh−1 km−1), acetaldehyde (11.4 mg veh−1 km−1), acetone (5.3 mg veh−1 km−1), crotonaldehyde (5.2 mg veh−1 km−1) and benzaldehyde (2.0 mg veh−1 km−1). These five carbonyl compounds together accounted for 87% of the sum of all DV carbonyl emission factors. For NDV, the five most abundant carbonyls in NDV emission at the tunnel were, in decreasing order, formaldehyde (3.5 mg veh−1 km−1), acetone (1.8 mg veh−1 km−1), methyl ethyl ketone (1.6 mg veh−1 km−1), m,p-tolualdehyde (1.0 mg veh−1 km−1) and acetaldehyde (mg veh−1 km−1). They accounted for 85% of the sum of all NDV carbonyl emission factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号