首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of Artisanal Fishing on Caribbean Coral Reefs   总被引:6,自引:0,他引:6  
Abstract:  Although the impacts of industrial fishing are widely recognized, marine ecosystems are generally considered less threatened by artisanal fisheries. To determine how coral reef fish assemblages and benthic communities are affected by artisanal fishing, we studied six Caribbean islands on which fishing pressure ranged from virtually none in Bonaire, increasing through Saba, Puerto Rico, St Lucia, and Dominica, and reaching very high intensities in Jamaica. Using stationary-point fish counts at 5 m and 15 m depth, we counted and estimated the lengths of all noncryptic, diurnal fish species within replicate 10-m-diameter areas. We estimated percent cover of coral and algae and determined reef structural complexity. From fish numbers and lengths we calculated mean fish biomass per count for the five most commercially important families. Groupers (Serranidae), snappers (Lutjanidae), parrotfish (Scaridae), and surgeonfish (Acanthuridae) showed order-of-magnitude differences in biomass among islands. Biomass fell as fishing pressure increased. Only grunts (Haemulidae) did not follow this pattern. Within families, larger-bodied species decreased as fishing intensified. Coral cover and structural complexity were highest on little-fished islands and lowest on those most fished. By contrast, algal cover was an order of magnitude higher in Jamaica than in Bonaire. These results suggest that following the Caribbean-wide mass mortality of herbivorous sea urchins in 1983–1984 and consequent declines in grazing pressure on reefs, herbivorous fishes have not controlled algae overgrowing corals in heavily fished areas but have restricted growth in lightly fished areas. In summary, differences among islands in the structure of fish and benthic assemblages suggest that intensive artisanal fishing has transformed Caribbean reefs.  相似文献   

2.
The ecology, defensive behavior and toxicity of three species of reef flat holothurians (Actinopyga mauritiana, Holothuria atra and Holothuria difficilis) were studied at Eniwetok Atoll, Marshall Islands. The average diurnal population density of H. difficilis ranged from 1.4 to 32 holothurians/900 cm2; resting respiratory rates (0.05 ml O2/g wet wt/h) were comparable during day and night; nourishment in H. difficilis may be primarily from bacteria and foraminifera in which about 2% of the dry weight of sediment consumed is utilized, and the species probably passes at least 3 g dry wt of sediment/m2/day (>1 kg/m2/year). A fundamental difference in energy flow is suggested: considerably more energy is passed from benthic algae to grazing and browsing fishes to predatory fishes on coral reefs whereas, in extra-tropical latitudes, more energy is shunted from benthic algae to invertebrates to predators. The effects of holothurin leading to death in fishes are irreversible. Holothuria difficilis is best protected from predation. Its body wall is toxic and it can accurately eject Cuvierian tubules, which are also toxic. The discharge of tubules was regulated by a circadian rhythm in May. Studies on holothurians and sponges suggest that many exposed coral reef invertebrates have evolved effective defensive mechanisms in association with high intensity predation.Supported by A.E.C. Contract AT (29-2)-226 with the University of Hawaii.  相似文献   

3.
Parrotfishes exhibit a range of feeding modes. These species vary in both feeding morphology and behaviour, but the vast majority of species leave distinctive scars on the substratum when feeding. Although the role of parrotfishes in reef resilience is well documented, the basis of this role and the effect of their grazing scars on the benthic community structure remain unclear. This study evaluated the dynamics of grazing scars of large adult Scarus rivulatus and Chlorurus microrhinos on an inshore reef in the Great Barrier Reef (GBR). These species represent the most abundant scraping and excavating parrotfish species on inshore reefs. Grazing scars of each species were marked, measured and observed for seven consecutive days. S. rivulatus grazing scars were smaller in area and volume and more rapidly reoccupied by algae than those of C. microrhinos. However, because of the higher abundance and feeding frequency of S. rivulatus at the study site, this species had higher algal removal rates than C. microrhinos. These species appear to play distinctly different functional roles in shaping the benthic community of inshore GBRs. S. rivulatus is primarily responsible for algal dynamics dominated by vegetative regrowth. In contrast, C. microrhinos opens relatively large areas which remain clear for several days. These scars may represent settlement sites which are relatively free from algae and sediment. This study provides new information on the differences between scraping and excavating parrotfishes and, in a system with just one abundant large excavating species, emphasizes the potential for low functional redundancy in high diversity coral reef systems.  相似文献   

4.
Two methods were used to assess the grazing impact of roving herbivorous fishes across a coral reef depth gradient within Pioneer Bay, Orpheus Island, Great Barrier Reef. The first technique employed was a method traditionally used to quantify herbivory on coral reefs via the (indirect) inference of herbivore impact from biomass estimates and reported feeding rates. The second method (one of a range of direct approaches) used remote underwater video cameras to film the daily feeding activity of roving herbivores in the absence of divers. Both techniques recorded similar patterns and relative levels of herbivore biomass across five reef zones at the study site. Indirect estimates of the grazing impact across the reef depth gradient of the three predominant species of herbivore broadly coincided with levels quantified directly by remote underwater video, indicating that, to a large extent, presence does correspond to function. However, the video data suggested that, for individual species in particular reef zones, the absolute level of impact may be less than that inferred from presence. In the case of the parrotfish Scarus rivulatus, the video recordings suggested that, at the reef crest, an average of 52% (±18 SE) of each m2 area of reef would be grazed each month, compared with an area of 109% (±41 SE) suggested by inferring grazing activity from presence alone. Potential biases associated with remote video recorders may explain some of the discrepancy between values. Overall, the results suggest that, for some fish groups, the indirect method of inferring function from presence can provide a good indication of relative levels of herbivore impact across a coral reef. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The biomass distribution of frondose algae on a Hawaiian reef varied from a period of minimum biomass (635 g wet weight m-2) during July–September to a period of maximum biomass (1,554 g m-2) during February–May. The pattern of variation had no significant correlation with any of the 4 environmental parameters measured (light intensity, temperature, water movement and salinity), although the decrease in wet biomass in winter was observed at the time of maximum water movement. When the biomass distribution of individual species was correlated with environmental parameters, 4 groups of ecological species emerged. One group had positive correlations with light intensity and negative correlations with water movement, while a second group of species had the opposite trend. Species in a third group had an irregular pattern of distribution throughout the year. Those in the fourth group had a regular annual cycle which did not correlate with any physical parameters, but did correlate negatively with the biomass distribution of another species of the same genus. The horizontal distribution of all species studied changed throughout the year, expanding or retracting across the reef in a manner correlating with the horizontal changes of water movement in many cases.  相似文献   

6.
Large animals are severely depleted in many ecosystems, yet we are only beginning to understand the ecological implications of their loss. To empirically measure the short-term effects of removing large animals from an ocean ecosystem, we used exclosures to remove large fish from a near-pristine coral reef at Palmyra Atoll, Central Pacific Ocean. We identified a range of effects that followed from the removal of these large fish. These effects were revealed within weeks of their removal. Removing large fish (1) altered the behavior of prey fish; (2) reduced rates of herbivory on certain species of reef algae; (3) had both direct positive (reduced mortality of coral recruits) and indirect negative (through reduced grazing pressure on competitive algae) impacts on recruiting corals; and (4) tended to decrease abundances of small mobile benthic invertebrates. Results of this kind help advance our understanding of the ecological importance of large animals in ecosystems.  相似文献   

7.
The moderately deep terraces and banks of the Northwestern Hawaiian Islands (NWHI) were surveyed to describe their habitat and reef-fish assemblages. These tracts of bottom at 30–40 m comprise more than 4,500 km2 of the regions reef area. The habitat was found to be dominated by algal meadows (65% cover of exposed bottom), with infrequent relief features. Annual monitoring of select stations for 4 years at Necker Bank indicated that the relative difference in algal abundance between stations persisted from year to year (at least in summer). Temperature records from year-long deployments of archival thermistors in high-cover (>70%) and low-cover (<30%) algal biotopes were indistinguishable, providing no explanation of the algal differences between stations. At all banks, Microdictyon was the primary alga, averaging 1.22 kg/m2. In spite of the extensive standing primary production, and a historical lack of fishing, bank reef-fish populations were impoverished. Mean densities, sizes, and biomass of trophic groups were considerably less than values reported for NWHI reef shallows. An overall mean biomass was estimated at 22.5 g/m2, which is a fifth of that reported for shallow reefs of the region. Fish biomass of all trophic groups was associated with the few sources of relief available on the banks. Apex predators (sharks, jacks, and snappers), common on all surveys (with a mean of five per station), were proposed to constrain fish populations to sparse sources of relief resulting in a skewed size structure of the two primary fish trophic components. Sizes of lower-level carnivores were tightly correlated with sources of relief whereas the size of herbivores were not, indicating that herbivores more often venture out and risk the exposed algal meadows. These bank summits are a rare example of a near pristine reef system with high benthic primary productivity and low fish biomass, and are a stark contrast to shallower coral-reef ecosystems of the NWHI.Communicated by P.W. Sammarco, Chauvin  相似文献   

8.
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.  相似文献   

9.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

10.
Herbivory is widely acknowledged as a key process determining the benthic community structure and resilience of coral reefs. Despite numerous studies that have examined herbivory across reef gradients in the Caribbean, few studies have directly quantified this process on Pacific reefs. Bioassays of two species of erect macroalgae (Sargassum swartzii and S. cristaefolium) were used to quantify variation in grazing intensity across seven habitats of varying depth and wave exposure on a mid-shelf reef in the northern Great Barrier Reef. Removal rates of Sargassum varied significantly among habitats, with both species displaying broadly similar patterns. The shallow habitats on the exposed aspect of the reef (i.e. reef crest, flat and back reef) experienced the highest reductions in mass (81.4–91.6% day−1) for both S. swartzii and S. cristaefolium, while the deeper exposed habitats (reef slope and base) displayed the lowest reductions (3.8–13.4% day−1) over a 24 h period. In contrast, the grazing intensity varied between the two species in the three habitats on the leeward aspect of the reef. Reductions in mass remained relatively high for S. swartzii on the patch reef and sheltered reef base and flat (62.7–76.5% day−1) but were considerably lower for S. cristaefolium (37.9–63.5% day−1) across the same habitats. Surprisingly, the rates of removal of Sargassum displayed no relationship with the density or biomass of roving herbivorous fishes or those species known to consume erect macroalgae, either collectively or independently. These results suggest that the relationship between browsing rates and herbivorous fish biomass is complex and may be driven by species that are underestimated in visual surveys. Direct quantification of browsing intensity using assays revealed a different pattern to inferences based on herbivore densities and highlights the potential difficulties of evaluating ecosystem processes based on visual census data alone.  相似文献   

11.
Although the fitness consequences of herbivory on terrestrial plants have been extensively studied, considerably less is known about how partial predation impacts the fitness of clonal marine organisms. The trophic role of Caribbean parrotfish on coral reefs is complex: while these fish are important herbivores, as corallivores (consumers of live coral tissue), they selectively graze specific species and colonies of reef-building corals. Though the benefits of parrotfish herbivory for reef resilience and conservation are well documented, the negative consequences of parrotfish grazing for coral reproductive fitness have not been previously determined. We examined recently grazed colonies of Montastraea annularis corals to determine whether grazing was positively associated with coral reproductive effort. We measured gonad number, egg number and size, and proportional reproductive allocation for grazed and intact coral colonies 2–5 days prior to their annual spawning time. We found that parrotfish selectively grazed coral polyps with high total reproductive effort (number of gonads), providing the first evidence that parrotfish selectively target specific tissue areas within a single coral colony. The removal of polyps with high reproductive effort has direct adverse affects on coral fitness, with additional indirect implications for colony growth and survival. We conclude that chronic grazing by parrotfishes has negative fitness consequences for reef-building corals, and by extension, reef ecosystems.  相似文献   

12.
It has been hypothesized that herbivorous fishes and the regular echinoidDiadema antillarum Philippi compete for benthic algae as their major food resource. Mass mortality ofD. antillarum in February 1984 provided the opportunity to test the hypothesis that herbivorous fishes and sea urchins were competing previously. Visual censuses of herbivorous fishes conducted over 4 yr in four reef zones on Tague Bay Reef, St. Croix, U.S. Virgin Islands, before and after the mass mortality indicated that population densities increased approximately three-fold in backreef and shallow (2m) forereef zones and two-fold, and four-fold in mid (5m) and deep (10m) forereef zones, respectively. Juvenile parrotfishes constituted the major component of these increases, except in the shallow forereef where acanthurids became most abundant. Grazing intensity by herbivorous fishes increased in three of the four reef zones immediately following the mass mortality. These data support the hypothesis that exploitative competition for algal resources was occurring prior to the sea urchin mass-mortality, although alternative hypotheses cannot be discounted completely. Despite the increases in the abundances of, and grazing by, herbivorous fishes, the algal community continued to increase in percent cover and biomass, indicating that increased grazing by fishes does not compensate for the loss of grazing byD. antillarum in controlling algal abundance and community structure.  相似文献   

13.
We studied benthic harpacticoid grazing on diatom algae from two sites on the White Sea intertidal sandflat. Diatoms from sediments and from harpacticoid gut contents were sampled in situ, identified and counted, and grazing rates were calculated by two ways: (1) using potential daily ration estimations and (2) from the gut content and gut-residence time data. Paraleptastacus kliei did not contain any diatoms in the guts and presumably fed on other objects (bacteria or flagellates). Two other dominating species studied, Heterolaophonte minuta and Huntemannia jadensis, contained an average of 604 and 222 diatom cells per specimen. Diet composition differed significantly from the natural algal community. Two diatoms of intermediate cell size (Nitzschia palea var. debilis and Navicula sp.) contributed 92–97% of gut content for H. minuta and 58–81% for Hn. jadensis, whereas these diatoms amounted to only about 10% of biomass in native community. Mean consumption rates were estimated as 50–200 μg of wet biomass/day/cm2, so the harpacticoids grazed only between 3 and 11% of the total microalgae biomass per day. The grazing impact on the two preferred diatom populations, however, was much more intensive, 10–30% per day for Navicula sp. and 55–228% for N. palea. Therefore, native harpacticoid populations demonstrate highly selective feeding and could be strongly limited by their food in spite of seemingly plentiful total abundance of microphytobenthos. This disproportionally high grazing pressure upon some species apparently could affect the structure of microalgae communities resulting in low relative abundance of mid-sized forms. We hypothesize that a very dynamic spatio-temporal distribution of epibenthic harpacticoids (short-living micropatches) may be the possible adaptation to such local food limitation.  相似文献   

14.
Monthly trawl surveys were performed in 1989 in North Bay and South Bay of St Vincent (New Caledonia) with both a shrimp trawl and fish trawl to produce a reference standard of the natural variability of an unexploited tropical soft-bottom fish assemblage. A total of 230 species belonging to 62 families were recorded. The mean density and biomass were 0.18 fishes m-2 and 4.31 g m-2, respectively. The major variations were explained by spatial factors. Species richness, density and biomass were greater in South Bay (204 species, 0.26 fishes m-2 and 5.90 g m-2) than in North Bay (105 species, 0.10 fishes m-2 and 2.71 g m-2), 34% of the species being present in both areas. The North Bay assemblage was characterized by four abundant benthic species (Saurida undosquamis, Gerres ovatus, Secutor ruconius and Upeneus moluccensis) and by numerous pelagic species (Carangidae, Sphyraenidae and Scombridae). The South Bay assemblage was characterized by several Mullidae, Bothidae and Balistidae, and by some rare species usually found on coral reefs (Pomacentridae and Chaetodontidae). These differences were induced by the physical and benthic characteristics of the two bays. North Bay was an homogeneous, confined, deposit area with few benthic organisms, whereas the substrate was more heterogeneous and the benthic organisms more diversified and abundant in South Bay, which was connected to the adjacent reef lagoon. Species richness remained stable in time, except in January when a hurricane disturbed the environment. Seasonal tendencies in species composition were evidenced in North Bay, with an autumn-winter structure opposed to a spring-summer structure, and characterized by the relative importance of the major species. No seasonal tendencies were observed in the organization of the South Bay assemblage. Nevertheless, mean density and biomass were at a minimum in summer in both bays; maxima occurred in winter. Biomass was negatively correlated to both temperature and rainfall, and reflected the population variations of the main species, particularly their reproductive migrations. Thus, the soft-bottom fish assemblages were strongly organized spatially in New Caledonia, but remained relatively stable over time.  相似文献   

15.
Two complete collections of the fishes residing on an isolated coral patch reef ( 1500 m2) at Oahu, Hawaii, were made 11 years apart. Of the 112 species of fishes in both collections combined, only 40% were in common, but these made up more than 85% of the wet biomass in each collection. The two assemblages of fishes were similar in trophic structure and standing crop. Many coral reef fish communities are dominated by carnivorous forms. In the present study, planktivorous fishes were the most important trophic group in the community; this was related to abundant zooplankton resources. Following the second collection in 1977, recolonization by fishes was followed for 1 year. Recolonization proceeded rapidly and was primarily by juvenile fishes well beyond larval metamorphosis. Within 6 months of the second collection, the trophic structure had been re-established. The MacArthur-Wilson model of insular colonization described the recolonization process and predicted an equilibrium situation in less than 2 years. The recolonization data suggested that chance factors may explain the colonization process on a small scale, but a relatively deterministic pattern emerged when considering the entire reef. Thus, at the community level the fishes are a persistent and predictable entity.  相似文献   

16.
17.
Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.  相似文献   

18.
The effect of amphipod grazing on algal community structure was studied within a 75 l refuge tank connected to a 6500 l closed-system, coral reef microcosm. When amphipods (Ampithoe ramondi) were absent or present in low numbers, a high biomass of mostly filamentous algal species resulted, including Bryopsis hypnoides, Centroceras clavulatum, Ceramium flaccidum, Derbesia vaucheriaeformis, Enteromorpha prolifera, Giffordia rallsiae, and Polysiphonia havanensis. These microalgae disappeared when amphipod density increase beyond approximately 1 individual cm-2 of tank surface. The macroalga Hypnea spinella germinated in the system in association with amphipod tube sites. H. spinella plants remained rare until filamentous species were eliminated by amphipod grazing. Feeding trials confirmed that H. spinella was protected from grazing by its size rather than a chemical defense strategy. The H. spinella community we observed is similar to the flora described on algal ridges where physical conditions exclude fish grazing. We suggest that amphipods and similar micrograzers are responsible for the algal community structure of these ridges. Caging experiments may be subject to similar effects from increased amphipod grazing on the algae. Introduction of fish that are amphipod predators into the refuge tank caused an increase in algal species diversity but total H. spinella growth rates fell from 25 g dry wt month-1 to less than 8 g dry wt month-1. We describe amphipod behavior in relation to changes in population density and food supply, and we stress the potential for increasing the productivity of commercial seaweeds through maintenance of appropriate amphipod species in mariculture facilities.  相似文献   

19.
The natural diet and mode of feeding of the rock lobster Jasus lalandii (H. Milne Edwards) was determined in a rock-lobster sanctuary near Cape Town, South Africa. Field observations were tested and confirmed by means of aquarium studies. Rock lobsters feed mainly upon ribbed mussels Aulacomya ater (Molina), which comprise the largest component of the sessile benthic fauna. Mussel remains were found as the major constituent in 97% of the rock-lobster stomachs examined. The density of rock lobsters averaged 8,100 per hectare (0.81 m-2), while mussel biomass averaged more than 5 kg (wet whole weight) m-2 within the same depth range (12 to 30 m). More than 80% of the mussel biomass comprised large individuals between 60 and 90 mm in length. Large rock lobsters (mainly males) were capable of feeding on all sizes of mussels, although many of these were inaccessible to predation. Smaller rock lobsters became progressively more limited in the size range of mussels which they could crack open and consume. Competition between rock lobsters for small mussels appeared to be intense, as mussels of suitable size for feeding were generally in short supply to most of the rock-lobster population. Hence, feeding and growth rates of rock lobsters are likely to be affected by the relative population densities of predator and prey. Growth rates of rock lobsters could be limited by food supplies even in areas where mussel biomass is comparatively large.  相似文献   

20.
Previous studies on the rocky intertidal shores of the Bay of Panama indicate that for many sessile and mobile organisms holes and crevices are important refuges from consumers. To study the dynamics of these hole-dwelling species assemblages, we devised a method allowing repetitive, non-destructive sampling and species manipulations in artificial holes. These are fiberglass sleeves with flanges at the outer edge that are inserted into receptacles made of quick-setting concrete. Predator and herbivore manipulations include: fences excluding slow-moving benthic consumers, bars across hole mouths restricting entry of large fishes and homogeneous (shelterless) surfaces created around a treatment decreasing abundance of small crabs. This design has withstood the rigors of two wet seasons in Panama. Results from two sites in Panama indicate that colonization occurs rapidly (6–7 months) in holes established in mid dry season. Encrusting fleshy algae (Ralfsia sp.) and ephemeral green algae (Cladophora spp.) colonize first and are succeeded by encrusting species of coralline algae, bryozoans and colonial tunicates and by erect fleshy red algae. Where consumers are present, encrusting corallines predominate; without consumers, bryozoans, tunicates and erect algae are more abundant. Zonation patterns develop within the holes, with the desiccation/heattolerant Ralfsia sp. dominating at the outer edges. With increasing deph, encrusting coralline algae, bryozoans and colonial tunicates reach their respective peak abundances. In contrast to the high variability observed among naturally occurring holes, replicates of each treatment tend to be similar. Between-treatment and between-site comparisons are less so. The naturally-occurring high level of small-scale patchiness is thus presumably due to variation in recruitment and in the local (microspatial) consumer regime. Substratum heterogeneity is therefore directly and indirectly important in maintaining a high local diversity in this community. As in other studies, consumers or disturbances are key factors in regulating patterns of community structure. More experiments of longer duration are necessary to ascertain the relative importances of consumers/disturbance and competition in controlling such assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号