首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luo Y  Hui D  Zhang D 《Ecology》2006,87(1):53-63
The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the long-term progressive N limitation (PNL) is net change in ecosystem N content in association with C accumulation in plant and soil pools under elevated CO2. We compiled data from 104 published papers that study C and N dynamics at ambient and elevated CO2. The compiled database contains C contents, N contents, and C:N ratio in various plant and soil pools, and root:shoot ratio. Averaged C and N pool sizes in plant and soil all significantly increase at elevated CO2 in comparison to those at ambient CO2, ranging from a 5% increase in shoot N content to a 32% increase in root C content. The C and N contents in litter pools are consistently higher in elevated than ambient CO2 among all the surveyed studies whereas C and N contents in the other pools increase in some studies and decrease in other studies. The high variability in CO2-induced changes in C and N pool sizes results from diverse responses of various C and N processes to elevated CO2. Averaged C:N ratios are higher by 3% in litter and soil pools and 11% in root and shoot pools at elevated relative to ambient CO2. Elevated CO2 slightly increases root:shoot ratio. The net N accumulation in plant and soil pools at least helps prevent complete down-regulation of, and likely supports, long-term CO2 stimulation of C sequestration. The concomitant C and N accumulations in response to rising atmospheric CO2 may reflect intrinsic nature of ecosystem development as revealed before by studies of succession over hundreds to millions of years.  相似文献   

2.
LeBauer DS  Treseder KK 《Ecology》2008,89(2):371-379
Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found that most ecosystems are nitrogen limited with an average 29% growth response to nitrogen (i.e., R = 1.29). The response ratio was significant within temperate forests (R = 1.19), tropical forests (R = 1.60), temperate grasslands (R = 1.53), tropical grasslands (R = 1.26), wetlands (R = 1.16), and tundra (R = 1.35), but not deserts. Eight tropical forest studies had been conducted on very young volcanic soils in Hawaii, and this subgroup was strongly N limited (R = 2.13), which resulted in a negative correlation between forest R and latitude. The degree of N limitation in the remainder of the tropical forest studies (R = 1.20) was comparable to that of temperate forests, and when the young Hawaiian subgroup was excluded, forest R did not vary with latitude. Grassland response increased with latitude, but was independent of temperature and precipitation. These results suggest that the global N and C cycles interact strongly and that geography can mediate ecosystem response to N within certain biome types.  相似文献   

3.
Some intrinsic properties of differential equation models of ecosystems are formulated. The properties, which are long-termed, are classified into fundamental, stability, and sensitivity substructures. An aspect of the ecological term “resilient” — asymptotic stability uniformly for all small parameter variations — is introduced in a mathematical setting. In the sensitivity substructure, bounded sensitivity and continuity of sensitivity with respect to solutions are recognized as intrinsic properties. Illustrations of these two properties are given.  相似文献   

4.
As catchments become increasingly urban, the streams that drain them become increasingly degraded. Urban streams are typically characterized by high-magnitude storm flows, homogeneous habitats, disconnected riparian zones, and elevated nitrogen concentrations. To reverse the degradation of urban water quality, watershed managers and regulators are increasingly turning to stream restoration approaches. By reshaping the channel and reconnecting the surface waters with their riparian zone, practitioners intend to enhance the natural nutrient retention capacity of the restored stream ecosystem. Despite the exponential growth in stream restoration projects and expenditures, there has been no evaluation to date of the efficacy of urban stream restoration projects in enhancing nitrogen retention or in altering the underlying ecosystem metabolism that controls instream nitrogen consumption. In this study, we compared ecosystem metabolism and nitrate uptake kinetics in four stream restoration projects within urban watersheds to ecosystem functions measured in four unrestored urban stream segments and four streams draining minimally impacted forested watersheds in central North Carolina, U.S.A. All 12 sites were surveyed in June through August of 2006 and again in January through March of 2007. We anticipated that urban streams would have enhanced rates of ecosystem metabolism and nitrate uptake relative to forested streams due to the increases in nutrient loads and temperature associated with urbanization, and we predicted that restored streams would have further enhanced rates for these ecosystem functions by virtue of their increased habitat heterogeneity and water residence times. Contrary to our predictions we found that stream metabolism did not differ between stream types in either season and that nitrate uptake kinetics were not different between stream types in the winter. During the summer, restored stream reaches had substantially higher rates of nitrate uptake than unrestored or forested stream reaches; however, we found that variation in stream temperature and canopy cover explained 80% of the variation across streams in nitrate uptake. Because the riparian trees are removed during the first stage of natural channel design projects, the restored streams in this study had significantly less canopy cover and higher summer temperatures than the urban and forested streams with which they were compared.  相似文献   

5.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

6.
基于MODIS NDVI的广东省陆地生态系统净初级生产力估算   总被引:1,自引:0,他引:1  
以改进的CASA模型为基础,结合MODISNDVI数据、气象资料和土地利用资料,估算了广东省陆地生态系统2001-2007年逐月净初级生产,并分析了其时空动态.结果显示:2001-2007年期间,广东省每年NPP产量为C 138.8Tg·a-1;年际动态显示,2003年NPP最高,2005年NPP最低,总体略呈下降趋势;年内动态显示,NPP累积主要发生在5-10月;空间分布显示,广东省NPP高值区为粤北植被覆盖良好地区;珠江三角洲为全省NPP的低值区.要维持区域生态可持续性,需要重点加强珠江三角洲地区的生态环境建设.  相似文献   

7.
Gough L  Moore JC  Shaver GR  Simpson RT  Johnson DR 《Ecology》2012,93(7):1683-1694
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.  相似文献   

8.
The brackish water amphipod Corophium orientale is the dominant macroinvertebrate species in the upper Mira estuary, a small mesotidal system located in the southwest coast of Portugal. As climate changes will increase the frequency and intensity of extreme events such as floods and droughts, these will have a negative effect on benthic estuarine invertebrates, namely C. orientale. In order to understand the effects of these events on C. orientale, a dynamic model, based on published information and calibrated with field data, was developed and different scenarios were tested.For model construction, the annual development of three cohorts of C. orientale, their growth rates, and the establishment of the timing of each cohort rise and extinction are introduced. This structure can be repeated indefinitely, for years, and few parameters are required. The model simulations highlight the need for refuge areas that enable a fast recovery of the amphipod population after an extreme event and the recolozination of the affected areas.  相似文献   

9.
Differential treatment of neighbours and strangers (the dear enemy phenomenon) can reduce the costly effects of territory defence. Individual recognition, and by extension the dear enemy phenomenon, was examined in the cordylid lizard Platysaurus broadleyi. I had no knowledge of familiarity between individuals and therefore classed intruders as neighbours or non-neighbours and tested for differences in agonistic response consistent with the dear enemy phenomenon. In the dear enemy phenomenon, levels of aggression are inversely related to degree of familiarity such that residents are more tolerant of immediate neighbours than distant territory holders. A manipulative field experiment in conjunction with field observations of known territory holders revealed that resident males allowed neighbours to approach more closely than non-neighbours before challenging them, residents were more aggressive towards non-neighbours than neighbours, contests between neighbours were significantly longer than between neighbours and non-neighbours and contests between residents and non-neighbours were likely to result in a win for the resident, while neighbours frequently drew contests. These results suggest a level of recognition consistent with the dear enemy phenomenon. I also manipulated front leg colour to test the hypothesis that it alone could serve as a cue for individual recognition. I found no support for this hypothesis and suggest that multiple cues operate in individual recognition. Received: 4 March 1999 / Received in revised form: 11 April 1999 / Accepted: 19 April 1999  相似文献   

10.
The global change currently observed is deemed to generate accelerated coastal erosion and an increase in frequency and intensity of extreme weather events. Populated tropical island coasts are particularly vulnerable. Awareness of this vulnerability has prompted recourse to the construction of operational observatories on the coastal dynamics of several French tropical islands, including Mayotte. The aims of this initiative are to characterise the coastal morphology of tropical islands and to monitor their rhythms and mechanisms of evolution, adaptation and resilience in the face of extreme climate and wave events (cyclones, storms, surges, strong swells…). Based on this, appropriate defence and/or adaptation strategies can be developed and implemented. Mayotte Island is a fine example of the implementation and utility of such an observatory. The island, in the southwest Indian Ocean, is characterised by a highly diversified coral reef-lagoon complex comprising pocket beaches and mangroves subject to increasing pressure from strong island demographic growth. The operational observatory set up on the island incorporates a Geographical Information System (GIS) based on a network sourced by various field measurements and observations conducted on the coastal forms on the basis of a predefined protocol and methodology. Field experiments include hydrodynamic measurements, topographic surveys, and observations, and these are coupled with the analysis of aerial photographs and regional meteorological data in order to gain a better understanding of the coastal morphology and of the evolution of the reef-lagoon complex. The results fed into the observatory and analysed through the GIS provide interactive maps of the coastal landforms and their evolution and dynamics over various timescales. Within a local framework of strong socio-economic and demographic pressures, and a more global context of environmental change, this observatory should lead to a better understanding and prediction of the morphodynamics of the coast of Mayotte, while providing data to the public at large, to researchers, and to stakeholders involved in decision-making in the face of the major and rapid environmental and socio-economic changes liable to affect the fragile reef-mangrove systems and pocket beaches.  相似文献   

11.
E. Tiezzi 《Ecological modelling》2011,222(16):2897-2902
This paper collects, with few minor formal changes, two of the latest scientific contributions ( [Tiezzi, 2006a] and [Tiezzi et al., 2010]) written by Prof. Enzo Tiezzi, where he introduced new concepts and tools to formalize and understand the role of thermodynamics in ecosystems theory.Particular attention is devoted to goal functions, to the relation of matter, energy, space and time and to the interdisciplinary approach connecting thermodynamics and biology. Entropy is discussed as a fundamental goal function in the far from equilibrium framework. The relationship between entropy, as a non-state function, and the state-function energy is stressed and discussed, at the light of the role of information. The theory of probability is also discussed in the light of new theoretical findings related to the role of events, also in terms of entropy and evolutionary thermodynamics.Confined Ontic Open Systems (COOS) represent the latest model proposed by Prof. Tiezzi based on his Ecodynamic theory, evolutionary thermodynamics, Ulanowicz's ontic. The model has a wide range of applications, including ecosystems, ecological economics, urban organization, the supra-molecular structure of water and global biosphere's models. The model is explained in terms of evolutionary thermodynamics and Jørgensen's ecosystems theory.  相似文献   

12.
Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.  相似文献   

13.
The aim of the paper is first to develop a non-equilibrium thermodynamic model of a multi-species ecosystem. The key to this is the expression of entropy-production (change of entropy) which is equivalent to a well-known expression of Liapunov function used in many problems of ecological and chemical reaction systems. On the basis of the expression of entropy-production we have made an entropic (thermodynamic) analysis of ecological stability (both global and local) including the study of interrelation between ecological diversity and stability. As illustrative examples we have discussed some basic problems of classical and generalized Lotka–Volterra systems.  相似文献   

14.
Summary Food consumption may reduce fighting intensity of territory owners by decreasing resource value (additional food cannot be consumed) and/or increasing fighting costs (food in the digestive tract may raise injury risks). A territorial harrier's (Circus cyaneus, adult females) decision to reduce its level of aggression should depend upon whether or not the intruder was a competitor for individual prey items (as are smaller male floaters) or for the territory proper (as are female floaters and especially female neighbors). Accordingly, following meals, aggressive intensity of owners was strongly reduced towards male floaters (more were ignored), slightly reduced towards female floaters (more were called at than chased), and remained unchanged towards neighbors (virtually all were chased). Hence, alterations in aggressive behavior of territory owners following food consumption may depend upon the type of intruder and the resource under contest (a food item or a territory).  相似文献   

15.

Microplastic pollution has recently been identified as a major issue for the health of ecosystems. Microplastics have typically sizes of less than 5 mm and occur in various forms, such as pellets, fibres, fragments, films, and granules. Mangroves and coral reefs are sensitive and restricted ecosystems that provide free ecological services such as coastal protection, maintaining natural cycles, hotspots of biodiversity and economically valuable goods. However, urbanization and industrial activities have started contaminating even these preserved ecosystems. Here we review sources, occurrence, and toxicity of microplastics in the trophic levels of mangrove and coral reef ecosystems. We present detection methods, such as microscopic identification and spectroscopy. We discuss mitigating measures that prevent the entry of microplastics into the marine environment.

  相似文献   

16.
森林生态系统的水文调节功能及生态学机制研究进展   总被引:2,自引:2,他引:2  
森林水文调节功能是森林所实现的重要服务功能之一,可是由于森林资源被无节制的开采利用,导致人们不断遭受森林破环所带来的洪旱灾害。因此关于森林生态水文功能研究已成为生态学和水文学的研究重点之一。近年来,国内外对森林水文调节过程及其生态学机制进行了广泛深入的研究,所以文章从森林的水文过程出发,对林冠截留、树干流、凋落物层截留、林地水分涵养和蒸发蒸腾及其影响因子的国内外研究现状进行了归纳分析,研究认为林地各冠层均能够截留降雨,降低雨水动能,从而减少地表径流的产生和对地表的冲击;凋落物层能蓄留水分、抑制蒸散、减缓地表径流;而树干流改变降雨水平空间格局,影响水分入渗以及土壤水源涵养。森林结构复杂,明显改变了降雨分配过程,而森林水文过程及调节功能又受到森林结构的制约,因此定量定性探讨森林生态系统的结构、过程与水文调节功能之间关系,是未来森林生态水文功能研究的重点。  相似文献   

17.
Population growth and social/technological developments have resulted in the buildup of carbon dioxide (CO2) in the atmosphere and oceans to the extent that we now see changes in the earth’s climate and ocean chemistry. Ocean acidification is one consequence of these changes, and it is known with certainty that it will continue to increase as we emit more CO2 into the atmosphere. Ocean acidification is a global issue likely to impact marine organisms, food webs and ecosystems and to be most severely experienced by the people who depend on the goods and services the ocean provides at regional and local levels. However, research is in its infancy and the available data on biological impacts are complex (e.g., species-specific response). Educating future generations on the certainties and uncertainties of the emerging science of ocean acidification and its complex consequences for marine species and ecosystems can provide insights that will help assessing the need to mitigate and/or adapt to future global change. This article aims to present different educational approaches, the different material available and highlight the future challenges of ocean acidification education for both educators and marine biologists.  相似文献   

18.
AQUATOX combines aquatic ecosystem, chemical fate, and ecotoxicological constructs to obtain a truly integrative fate and effects model. It is a general, mechanistic ecological risk assessment model intended to be used to evaluate past, present, and future direct and indirect effects from various stressors including nutrients, organic wastes, sediments, toxic organic chemicals, flow, and temperature in aquatic ecosystems. The model has a very flexible structure and provides multiple analytical tools useful for evaluating ecological effects, including uncertainty analysis, nominal range sensitivity analysis, comparison of perturbed and control simulations, and graphing and tabulation of predicted concentrations, rates, and photosynthetic limitations. It can represent a full aquatic food web, including multiple genera and guilds of periphyton, phytoplankton, submersed aquatic vegetation, invertebrates, and fish and associated organic toxicants. It can model up to 20 organic chemicals simultaneously. (It does not model metals.) Modeled processes for organic toxicants include chemodynamics of neutral and ionized organic chemicals, bioaccumulation as a function of sorption and bioenergetics, biotransformation to daughter products, and sublethal and lethal toxicity. It has an extensive library of default biotic, chemical, and toxicological parameters and incorporates the ICE regression equations for estimating toxicity in numerous organisms. The model has been implemented for streams, small rivers, ponds, lakes, reservoirs, and estuaries. It is an integral part of the BASINS system with linkage to the watershed models HSPF and SWAT.  相似文献   

19.
Despite intensive sampling efforts in coral reefs, densities and species richness of anguilliform fishes (eels) are difficult to quantify because these fishes evade classical sampling methods such as underwater visual census and rotenone poisoning. An alternative method revealed that in New Caledonia, eels are far more abundant and diverse than previously suspected. We analysed the stomach contents of two species of sea snakes that feed on eels (Laticauda laticaudata and L. saintgironsi). This technique is feasible because the snakes return to land to digest their prey, and (since they swallow their prey whole) undigested food items are identifiable. The snakes’ diet consisted almost entirely (99.6%) of eels and included 14 species previously unrecorded from the area. Very large populations of snakes occur in the study area (e.g. at least 1,500 individuals on a small coral islet). The snakes capture approximately 36,000 eels (972 kg) per year, suggesting that eels and snakes play key roles in the functioning of this reef ecosystem.  相似文献   

20.
Investigation of various aspects of the ecological problems of polychlorinated biphenyls (PCBs) has grown and continues to grow with remarkable intensity. However, it appears that certain areas of PCBs research are developed further than the others. For example, chemical and physical behavior and synthesis of PCBs are well studied, while the metabolism of PCBs and other routes of degradation, including toxicological significance and environmental impact, continue to challenge the scientists.In this paper, the chemical and physical properties of PCBs as well as the implications of these properties for the behavior of PCBs in ecological systems are discussed. The effect of PCBs on interrelated ecological systems are described. The distribution and fate of PCBs in the atmosphere, hydrosphere and lithosphere, and transport of PCBs through these systems are discussed. The toxic significance, biological accumulation and ecological magnification are described at various trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号