首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ophiocoma pumila Lütken andOphiocomella ophiactoides (H. L. Clark) are morphologically similar brittle stars with contrasting life histories, the former obligately sexual, the latter fissiparous (capable of both sexual reproduction and asexual proliferation by binary fission). Electrophoretic analysis of five polymorphic enzymes was used to assess the genetic consequences of these differing life histories and provide a genetic perspective on the taxonomic relationship between the two species. Genotypic diversity ofOphiocoma pumila collected at Discovery Bay, Jamaica, in 1985 conformed to expectations for a sexually reproducing population. In contrast, genotypic diversity ofOphiocomella ophiactoides at this site was significantly lower than expected for a sexually reproducing population, due largely to the predominance of clonal proliferation over larval recruitment. Large variation in clonal composition over a short (50 m) distance emphasized the very localized scale of clonal mixing in this species. Allozymic data are indicative of a close sibling species relationship betweenOphiocoma pumila andOphiocomella ophiactoides which suggests that the present generic separation of the two species should be re-examined. Electrophoretic analysis was also used to examine the genetic structure of sponge- and alga-dwelling populations of a second fissiparous brittle star,Ophiactis savignyi (Müller & Troschel), which was also collected at Jamaica in 1985. Striking differences in the allelic composition of sponge- and alga-dwellingO. savignyi were observed. Genotypic diversity ofO. savignyi in sponges was very low, each sponge being dominated by a single genotype. Genotypic diversity ofO. savignyi in algae was higher, although still significantly lower than expectations for a sexually reproducing population. In the light of the highly clonal composition of fissiparous brittle-star populations, the adaptive significance of clonal growth may be related to an increase in the overall fitness of dispersed clones (genets), compared to individuals of strictly sexual counterparts, through greater genotypespecific biomass and, hence, fecundity.Contribution No. 476 of the Discovery Bay Marine Laboratory of the University of the West Indies  相似文献   

2.
Biodiversity loss is proceeding at an unprecedented rate, yet we lack a thorough understanding of the consequences of losing diversity at different scales. While species diversity is known to impact community and ecosystem processes, genotypic diversity is assumed to have relatively smaller effects. Nonetheless, a few recent studies suggest that genotypic diversity may have quantitatively similar ecological consequences compared to species diversity. Here we show that increasing either genotypic diversity of common evening primrose (Oenothera biennis) or species diversity of old-field plant species resulted in nearly equivalent increases (approximately 17%) in aboveground primary production. The predominant mechanism explaining this effect, niche complementarity, was similar for each type of diversity. Arthropod species richness also increased with both types of plant diversity, but the mechanisms leading to this effect differed: abundance-driven accumulation of arthropod species was important in plant genotypic polycultures, whereas resource specialization was important in plant species polycultures. Thus, similar increases in primary productivity differentially impacted higher trophic levels in response to each type of plant diversity. These results highlight important ecological similarities and differences between genotypic and species diversity and suggest that genotypic diversity may play a larger role in community and ecosystem processes than previously realized.  相似文献   

3.
Captive‐breeding programs can be implemented to preserve the genetic diversity of endangered populations such that the controlled release of captive‐bred individuals into the wild may promote recovery. A common difficulty, however, is that programs are founded with limited wild broodstock, and inbreeding can become increasingly difficult to avoid with successive generations in captivity. Program managers must choose between maintaining the genetic purity of populations, at the risk of inbreeding depression, or interbreeding populations, at the risk of outbreeding depression. We evaluate these relative risks in a captive‐breeding program for 3 endangered populations of Atlantic salmon (Salmo salar). In each of 2 years, we released juvenile F1 and F2 interpopulation hybrids, backcrosses, as well as inbred and noninbred within‐population crosstypes into 9 wild streams. Juvenile size and survival was quantified in each year. Few crosstype effects were observed, but interestingly, the relative fitness consequences of inbreeding and outbreeding varied from year to year. Temporal variation in environmental quality might have driven some of these annual differences, by exacerbating the importance of maternal effects on juvenile fitness in a year of low environmental quality and by affecting the severity of inbreeding depression differently in different years. Nonetheless, inbreeding was more consistently associated with a negative effect on fitness, whereas the consequences of outbreeding were less predictable. Considering the challenges associated with a sound risk assessment in the wild and given that the effect of inbreeding on fitness is relatively predictable, we suggest that risk can be weighted more strongly in terms of the probable outcome of outbreeding. Factors such as genetic similarities between populations and the number of generations in isolation can sometimes be used to assess outbreeding risk, in lieu of experimentation. Evaluación del Riesgo de Depresión por Endogamia y Exogamia en un Programa de Reproducción en Cautiverio  相似文献   

4.
The accumulation of new deleterious mutations has been predicted to constitute a significant threat to the survival of finite sexually reproducing populations. Three measures of genetic load were made on populations of Drosophila melanogaster maintained at effective population sizes of 25, 50, 100, 250, and 500 for 45 or 50 generations and their outbred base population and a new sample from the same wild population. Genetic loads were measured as fitness differentials between inbred and non-inbred lines derived from each population under both benign ( productivity of single pairs) and competitive (competitive index) conditions. No trend of smaller populations exhibiting greater genetic loads than larger ones was observed under either benign or competitive conditions. Further, genetic loads were similar in captive and wild populations. Frequencies of deleterious and lethal alleles on chromosome II were measured by making the chromosome (approximately 40% of the genome) homozygous using a marked balancer stock. Neither deleterious nor lethal allele frequencies exhibited a relationship with population size. The accumulation of detrimental mutations does not appear to pose a significant threat to finite sexual populations with effective sizes of 25 or more over the 100–200 year time frames considered in most wildlife conservation programs.  相似文献   

5.
Abstract: Connectivity among populations plays a crucial role in maintaining genetic variation at a local scale, especially in small populations affected strongly by genetic drift. The negative consequences of population disconnection on allelic richness and gene diversity (heterozygosity) are well recognized and empirically established. It is not well recognized, however, that a sudden drop in local effective population size induced by such disconnection produces a temporary disequilibrium in allelic frequency distributions that is akin to the genetic signature of a demographic bottleneck. To document this effect, we used individual‐based simulations and empirical data on allelic richness and gene diversity in six pairs of isolated versus well‐connected (core) populations of European tree frogs. In our simulations, population disconnection depressed allelic richness more than heterozygosity and thus resulted in a temporary excess in gene diversity relative to mutation drift equilibrium (i.e., signature of a genetic bottleneck). We observed a similar excess in gene diversity in isolated populations of tree frogs. Our results show that population disconnection can create a genetic bottleneck in the absence of demographic collapse.  相似文献   

6.
Very few studies have investigated the effect of genetic diversity on the behavioral and phenotypic traits linked to the competitive ability of individuals. In this study, we reared juvenile Atlantic salmon (Salmo salar) alone or with the competitive rainbow trout (Oncorhynchus mykiss) in order to: (1) to assess correlations between heterozygosity and traits related to individual competitive ability [i.e., heterozygosity–fitness correlations (HFCs)] in Atlantic salmon, and (2) to evaluate the effect of the competitive rainbow trout on any such HFCs. We also tested whether a few loci had a disproportionately large effect (i.e., the local effect hypothesis) or, on the contrary, if all loci contributed equally (i.e., the global effect hypothesis) in explaining the observed HFCs. We found significant HFCs for phenotypic traits related to the competitive ability of juvenile Atlantic salmon, i.e., the growth rate and the distance to the feeding source. Some HFCs were nonlinear, suggesting that individuals with intermediate levels of heterozygosity were favored. In addition, we found that the competition exerted by rainbow trout only weakly modified these HFCs as the relationships were highly consistent across treatments. We demonstrated that the local-effect hypothesis best explained both linear and nonlinear HFCs. Overall, our results illustrated the importance of genetic diversity in explaining the behavioral variability observed within populations. Moreover, we provide evidence that, even if a competitive species can have strong ecological effects, the relationships between genetic diversity and fitness-related traits in juvenile Atlantic salmon were not influenced by such effects.  相似文献   

7.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

8.
Plant translocation is a useful tool for implementing assisted gene flow in recovery plans of critically endangered plant species. Although it helps to restore genetically viable populations, it is not devoid of genetic risks, such as poor adaptation of transplants and outbreeding depression in the hybrid progeny, which may have negative consequences in terms of demographic growth and plant fitness. Hence, a follow-up genetic monitoring should evaluate whether the translocated populations are genetically viable and self-sustaining in the short and long term. The causes of failure to adjust management responses also need to be identified. Molecular markers and fitness-related quantitative traits can be used to determine whether a plant translocation enhanced genetic diversity, increased fitness, and improved the probability of long-term survival. We devised guidelines and illustrated them with studies from the literature to help practitioners determine the appropriate genetic survey methods so that management practices can better integrate evolutionary processes. These guidelines include methods for sampling and for assessing changes in genetic diversity and differentiation, contemporary gene flow, mode of local recruitment, admixture level, the effects of genetic rescue, inbreeding or outbreeding depression and local adaptation on plant fitness, and long-term genetic changes.  相似文献   

9.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   

10.
Genetic variation was examined in Helonias bullata , a threatened perennial plant species that occurs in isolated wetland habitats. Fifteen populations representing the species' geographic range were sampled. Genetic diversity was low for the species ( H es = 0.053) as well as within populations ( H ep = 0.029). Of the 33 allozyme loci examined, 11 (33%) were polymorphic, while on average only 12.8% (4) of the loci were polymorphic within populations. The number of alleles per polymorphic locus was 2.36 for the species and averaged 2.09 across populations. For every genetic parameter calculated, variation in H. bullata was lower than that typically found for narrowly distributed plant species. The lowest levels of genetic diversity were found in northern areas that were colonized following the last glacial epoch. The number of genotypes detected per population ranged from three to 21, with a mean of 13 for this clonally reproducing species. We found a relatively high proportion of total genetic diversity (30.6%) among populations and a significant correlation (p < 0.002) between genetic distance and geographic distance. Genetic drift phenomena appear to play a major role in the population genetics of this species. Anomalously, several populations that appeared most limited in size and vigor were genetically most variable, perhaps because they represent older, relictual populations. Life-history characteristics of H. bullata coupled with low levels of genetic diversity and the degradation and disappearance of wetlands threaten the existence of this species.  相似文献   

11.
In most sexually reproducing animals, the behavior of one or both sexes during courtship critically influences the success at mating of the opposite sex. This behavior is often interpreted as “mate choice,” and there is great interest in why such choices are exercised. The explanation for the evolution of mate choice that has received the most attention and generated the most controversy is based on assumed genetic effects. In this study, we investigated whether female túngara frogs, which choose mates based on acoustic cues, have a preference for genetically less related males. Specifically, we determine if there is disassortive mating based on microsatellite markers, if there is information in the advertisement call that could be used to assess genetic similarity, and if females exhibit acoustic-based mating preferences that would promote choice for genetic diversity. Using seven microsatellite markers, we found no correlation of male call similarity and male genetic relatedness. Female choice experiments showed no female preference for calls of less related males, and there was no evidence for inbreeding avoidance in the field. Our results do not support the hypothesis of mate choice based on information about genetic relatedness conveyed by acoustic signals in túngara frogs.  相似文献   

12.
Forsman A  Aberg V 《Ecology》2008,89(5):1201-1207
We evaluate predictions concerning the evolutionary and ecological consequences of color polymorphisms. Previous endeavors have aimed at identifying conditions that promote the evolution and maintenance within populations of alternative variants. But the polymorphic condition may also influence important population processes. We consider the prediction that populations that consist of alternative "ecomorphs" with coadapted gene complexes will utilize more diverse resources and display higher rates of colonization success, population persistence, and range expansions, while being less vulnerable to range contractions and extinctions, compared with monomorphic populations. We perform pairwise comparative analyses based on information for 323 species of Australian lizards and snakes. We find that species with variable color patterns have larger ranges, utilize a greater diversity of habitat types, and are underrepresented among species currently listed as threatened. These results are consistent with the proposition that the co-occurrence of multiple color variants may promote the ecological success of populations and species, but there are also alternative interpretations.  相似文献   

13.
Abstract:  The Mesa Central of Mexico is of special conservation interest due to its high richness of freshwater fish species, of which the goodeines are one of the most representative groups. Through an integrated approach, we determined conservation priorities for goodeine populations. We based our recommendations on the genetic diversity (variation in five microsatellite DNA loci) in 10 populations of Zoogoneticus quitzeoensis and on an analysis of ecological (e.g., presence of exotic species), social (e.g., political situation), and environmental (e.g., pollution) information for 52 historical occurrence points for species in the genus Zoogoneticus . Patterns of genetic erosion and genetic diversity indices were closely associated with human impact. Recent bottleneck events were most evident in the populations from remnants of the lakes drained at the beginning of the twentieth century. We identified seven operational conservation units (OCUs), all of which should be conserved because they contain unique portions of the total variation of the species. Special attention needs to be given to increase genetic variability, recover population sizes, and reestablish contact among populations within OCUs. It is imperative to create an integrative and effective approach for the recovery and conservation of the freshwater fish diversity of Central Mexico that is based on social and natural sciences.  相似文献   

14.
It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3‐pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50–80 years after their construction. More generally, our 3‐pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts.  相似文献   

15.
Traditionally, evolutionary ecology and conservation biology have primarily been concerned with how environmental changes affect population size and genetic diversity. Recently, however, there has been a growing realization that phenotypic plasticity can have important consequences for the probability of population persistence, population growth, and evolution during rapid environmental change. Habitat fragmentation due to human activities is dramatically changing the ecological conditions of life for many organisms. In this review, we use examples from the literature to demonstrate that habitat fragmentation has important consequences on oviposition site selection in insects, with carryover effects on offspring survival and, therefore, population dynamics. We argue that plasticity in oviposition site selection and maternal effects on offspring phenotypes may be an important, yet underexplored, mechanism by which environmental conditions have consequences across generations. Without considering the impact of habitat fragmentation on oviposition site selection, it will be difficult to assess the effect of fragmentation on offspring fitness, and ultimately to understand the impact of anthropogenic-induced environmental change on population viability.  相似文献   

16.
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species’ genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10–16%; IBE, 1–5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.  相似文献   

17.
Vellend M 《Ecology》2006,87(2):304-311
Several lines of evidence suggest that the species diversity and composition of communities should depend on genetic diversity within component species, but there has been very little effort to directly assess this possibility. Here I use models of competition among genotypes and species to demonstrate a strong positive effect of the number of genotypes per species on species diversity across a range of conditions. Genetic diversity allows species to respond to selection imposed by competition, resulting in both functional convergence and divergence among species depending on their initial niche positions. This ability to respond to selection promotes species coexistence and contributes to a reduction in variation in species composition among communities. These models suggest that whenever individual fitness depends on the degree of functional similarity between a focal individual and its competitors, genetic diversity should promote species coexistence; this prediction is consistent with the few relevant empirical data collected to date. The results point to the importance of considering the genetic origin and diversity of material used in ecological experiments and in restoration efforts, in addition to highlighting potentially important community consequences of the loss of genetic diversity in natural populations.  相似文献   

18.
Catastrophic disturbances often provide "natural laboratories" that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance management. Despite severe alteration of nearly 600 km2 of habitat, coastal tailed frogs (Ascaphus truei) were found within a portion of the blast area five years after eruption. We investigated the genetic source of recolonization within the blast area and tested whether post-eruption salvage logging and subsequent tree planting influenced tailed frog movement patterns. Our results support widespread recolonization across the blast area from multiple sources, as all sites are grouped into one genetic cluster. Landscape genetic models suggest that gene flow through the unmanaged portion of the blast area is influenced only by distance between sites and the frost-free period (r2 = 0.74). In contrast, gene flow pathways within the blast area where salvage logging and replanting occurred post-eruption are strongly limited (r2 = 0.83) by the physiologically important variables of heat load and precipitation. These data suggest that the lack of understory and coarse wood (downed and standing dead tree boles) refugia in salvaged areas may leave frogs more susceptible to desiccation and mortality than those frogs moving through the naturally regenerated area. Simulated populations based on the landscape genetic models show an increase in the inbreeding coefficient in the managed area relative to the unmanaged blast area. In sum, we show surprising resilience of an amphibian species to a catastrophic disturbance, and we suggest that, at least for this species, naturally regenerating habitat may better maintain long-term genetic diversity of populations than actively managed habitat.  相似文献   

19.
Ellers J  Rog S  Braam C  Berg MP 《Ecology》2011,92(8):1605-1615
Increases in biodiversity can result from an increase in species richness, as well as from a higher genetic diversity within species. Intraspecific genetic diversity, measured as the number of genotypes, can enhance plant primary productivity and have cascading effects at higher trophic levels, such as an increase in herbivore and predator richness. The positive effects of genotypic mixtures are not only determined by additive effects, but also by interactions among genotypes, such as facilitation or inhibition. However, so far there has been no effort to predict the extent of such effects. In this study, we address the question of whether the magnitude of the effect of genotype number on population performance can be explained by the extent of dissimilarity in key traits among genotypes in a mixture. We examine the relative contribution of genotype number and phenotypic dissimilarity among genotypes to population performance of the soil arthropod, Orchesella cincta. Nearly homogeneous genotypes were created from inbred isofemale lines. Phenotypic dissimilarity among genotypes was assessed in terms of three life-history traits that are associated with population growth rate, i.e., egg size, egg development time, and juvenile growth rate. A microcosm experiment with genotype mixtures consisting of one, two, four, and eight genotypes, showed that genotypic richness strongly increased population size and biomass production and was associated with greater net diversity effects. Most importantly, there was a positive log-linear relationship between phenotypic dissimilarity in a mixture and the net diversity effects for juvenile population size and total biomass. In other words, the degree of phenotypic dissimilarity among genotypes determined the magnitude of the genotypic richness effect, although this relationship leveled off at higher values of phenotypic dissimilarity. Although the exact mechanisms responsible for these effects are currently unknown, similar advantages of trait dissimilarity have been found among species. Hence, to better understand population performance, genotype number and phenotypic dissimilarity should be considered collectively.  相似文献   

20.
The Paradox of Forest Fragmentation Genetics   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts widespread loss of genetic diversity from drift and inbreeding in trees subjected to habitat fragmentation, yet empirical support of this theory is scarce. We argue that population genetics theory may be misapplied in light of ecological realities that, when recognized, require scrutiny of underlying evolutionary assumptions. One ecological reality is that fragment boundaries often do not represent boundaries for mating populations of trees that benefit from long-distance pollination, sometimes abetted by long-distance seed dispersal. Where fragments do not delineate populations, genetic theory of small populations does not apply. Even in spatially isolated populations, where genetic theory may eventually apply, evolutionary arguments assume that samples from fragmented populations represent trees that have had sufficient time to experience drift, inbreeding, and ultimately inbreeding depression, an unwarranted assumption where stands in fragments are living relicts of largely unrelated predisturbance populations. Genetic degradation may not be as important as ecological degradation for many decades following habitat fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号