首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This article presents a methodology to calculate the social cost of sustainability metrics with environmental footprint evaluation tools. Measuring the impacts of a remediation project on society is challenging because the methods by which these impacts can be measured have not been established. To perform a complete sustainability assessment of a project's life cycle, costs borne by society in terms of environmental, economic, and community impacts must be evaluated. Two knowledge gaps have been identified among the sustainability assessments currently being performed during a remediation project's life cycle: (1) lack of methodologies available to evaluate impacts on the socioeconomic aspects of remediation and (2) lack of sustainability assessments conducted during the site characterization stage. Sustainability assessments were conducted on two case studies using the methodology proposed in this article: one during the site characterization stage and the other during remedial action. The results of this study demonstrated that costs borne by society from a remediation project are significant and metric specific. This study also highlighted the benefits of conducting a sustainability assessment at the site characterization stage using environmental footprint analysis tools, cost benefit analysis, and an evaluation of costs borne by society. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for waste system performance assessments.  相似文献   

3.
In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.  相似文献   

4.
The Air Force Center for Engineering and the Environment (AFCEE) is performing Environmental Restoration Program Optimization (E‐RPO) at various United States Air Force (USAF) installations to evaluate existing remediation strategies and recommend actions to advance issues impacting the remediation program. As sustainability practices (including green and sustainable remediation [GSR]) increase at Air Force facilities and throughout the environmental industry, the use of alternative energy‐collection sources (i.e., solar photovoltaics [PV] and wind turbines) is likely to increase dramatically. Although PV and wind power systems exhibit a low environmental footprint during their use, there are potential human health and environmental impacts from the manufacturing and recycling processes. This article presents a summary of available information regarding the environmental impacts associated with life‐cycle assessments that include raw material extraction and refinement, product manufacturing, use, and postuse disposal for PV and wind turbines (i.e., cradle‐to‐grave impacts). © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The purpose of this study is to quantify comparable environmental impacts within a Life Cycle Analysis (LCA) perspective, for buildings in which the first (Materials) and last (End of Life) life cycle stages are adjusted to several waste/material management options. Unlike most LCAs, the approach is “top-down” rather than “bottom-up”, which usually involves large amounts of data and the use of specific software applications. This approach is considered appropriate for a limited but expedient LCA designed to compare the environmental impacts of different life cycle options.Present results, based on real buildings measurements and demolition contractor activities, show that shallow, superficial, selective demolition may not result in reduced environmental impacts. Calculations actually show an increase (generally less than 5%) in most impact categories for the Materials and End of Life stages because of extra transportation needs. However, core material separation in demolition operations and its recycling and/or reuse does bring environmental benefits. A reduction of around 77% has been estimated in the climate change impact category, 57% in acidification potential and 81% in the summer smog impact (for the life cycle stages referred).  相似文献   

6.
Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.  相似文献   

7.

Graft copolymerization is a distinctive approach to modify the inherently cheap natural fibers (NFs) using different initiators to incorporate synthetic polymer side chains allowing development of novel types of hybrid materials. This method has been widely applied to develop a variety of NFs based adsorbents for decontamination of toxic pollutants from the aqueous environment. However, the development of high-performance adsorbents from NFs is steady challenged by the need to preserve the sustainability during graft modifications and applications. This article critically reviews the progress on modifications of NFs by graft copolymerization of polar monomers on NFs using various initiating methods and their applications in wastewater treatment. Particularly, the applications of the grafted NFs in removal of heavy metal ions, synthetic dyes, oil spills and extraction of precious metals from wastewater are elaborated. The critical challenges to the viability and sustainability of NFs-based adsorbents with respect to functionalization by graft copolymerization and environmental impacts are discussed and the future research directions are also outlined.

  相似文献   

8.
叶旌  刘洪英 《化工环保》2017,36(5):581-586
回顾了美国《有毒物质控制法》(TSCA)中现有化学物质数据报告(CDR)制度的历史背景。介绍了CDR制度的基本内容、数据质量保证、主要修订情况,以及2012年CDR上报的化学物质数据信息汇总分析情况。针对2016年开展的新一轮CDR数据报告,总结了其最新的变化和具体要求。从建立化学物质信息收集制度、对现有化学物质进行分级管理、重点关注化学物质用途划分和归类,以及建立数据库和信息系统等4个方面,探讨了CDR制度对我国化学品环境管理的启示。  相似文献   

9.
介绍了我国新化学物质环境管理的相关要求;结合国际新化学物质环境管理经验和近年国内生态环境保护形势的要求,分析了我国新化学物质环境管理制度存在的主要问题;从调整管理类别、明确物质范围、简化申报类型、建立排查机制、强化主体责任、授权技术内审、简化信息报告、完善相关内容等方面对我国《新化学物质环境管理办法》的修订完善进行了探讨。  相似文献   

10.
Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study.  相似文献   

11.
This article reviews recent progress in material flow analysis and its use in providing resource productivity indicators and is based on developments in Japanese policy toward a sound material-cycle society and in international forums such as within the Organisation for Economic Development and Cooperation, covering both institutional and methodological issues. Indicators derived from economy-wide material flow accounts such as direct material inputs are useful to demonstrate the absolute size of a physical economy and to reinforce the need to both reduce consumption of natural resources and limit waste generation. Interpretation of material flows as resources and potential environmental impacts is discussed, and linkages between the size of material flows and specific environmental impacts and damage must be further elaborated for use in environmental policy. Lessons learned from the practical use of resource productivity indicators are also discussed. Additional indicators are needed that can be used to evaluate the performance of microeconomic contributors. The need for an integrated approach that links upstream resource issues and downstream waste issues through the 3Rs concept or the circular economy/society concept is attracting increasing attention. Consequently, the accumulation of reliable scientific knowledge and data in this field in a fully international context is essential.  相似文献   

12.
Mismanagement of solid waste leads to public health risks, adverse environmental impacts and other socio-economic problems. This is obvious in many developing countries around the world. Currently, several countries have realized that the way they manage their solid wastes does not satisfy the objectives of sustainable development. Therefore, these countries, including Jordan, which forms the case study presented here, have decided to move away from traditional solid waste management (SWM) options to more integrated solid waste management approaches. Unfortunately, in many developing countries like Jordan, the lack of adequate resources to implement the necessary changes is posing a serious obstacle. The present paper discusses the various practices and challenges of solid waste management in Jordan from both a technical and economic perspective. An overview of the current practices and their environmental implications in three major cities of the country, which generate more than 70% of the country's solid waste, is presented. Recent literature on solid waste management in Jordan has been reviewed; and data on the total amount of municipal solid waste generated, compositional variations over the last two decades, and future projections are presented. The necessity, importance and needs of solid waste recovery and reuse are identified. The review of the legal frameworks indicated that there is a need for detailed and clear regulations dealing specifically with solid waste. The service cost analysis revealed that none of the municipalities in Jordan sufficiently recover the cost of the services, with more than 50% being subsidized from the municipalities' budgets. The allocation of the available resources was analyzed and service performance indicators assessed. Factors that should be taken into consideration when making the decision to move from a traditional SWM approach to a more integrated approach are highlighted and suggestions for a more smooth transition are recommended.  相似文献   

13.
Medical waste management is of great importance due to its potential environmental and public health risks, especially in developing countries where both financial and technological resources on medical waste management are still lacking. Although many studies have focused on country-scaled medical waste management, few have paid close attention to regional (city-scale) management, particularly in China. This paper fills such a gap by employing a case study approach. Due to its representative nature, Shenyang was selected as the case study. After a review of China’s medical waste management, an empirical study in Shenyang was conducted in order to analyze the current state as well as identify key challenges on regional medical waste management. Based upon the local realities and aiming to better manage medical wastes, an integrated medical waste management framework is developed. Such a platform encourages the establishment of a specific medical waste management authority, a city scaled capacity building program on improving the general public’s awareness, an information platform, application of state-of-the-art technologies, as well as creation of an effective financial system. The combination of such initiatives can significantly improve the overall eco-efficiency of medical waste management at the regional level and should be promoted to other developing cities.  相似文献   

14.
This article reports on a literature review and meta-analysis of 82 studies, mostly life cycle assessments (LCAs), which quantified end-of-life (EOL) management options for organic waste. These studies were reviewed to determine the environmental preferability, or lack thereof, for a number of EOL management methods such as aerobic composting (AC), anaerobic digestion (AD), gasification, combustion, incineration with energy recovery (often denoted as waste-to-energy incineration), mechanical biological treatment, incineration without energy recovery (sometimes referenced by just the word “incineration”), and landfill disposal with and without energy recovery from generated methane. Given the vast differences in boundaries as well as uncertainty and variability in results, the LCAs among the 82 studies provided enough data and results to make conclusions regarding just four EOL management methods – aerobic composting, anaerobic digestion, mass burn waste-to-energy (WTE), and landfill gas-to-energy (LFGTE). For these four, the LCAs proved sufficient to determine that aerobic composting and anaerobic digestion are both environmentally preferable to either WTE or LFGTE in terms of climate change impacts.For climate change, LCA results were mixed for WTE versus LFGTE. Furthermore, there is a lack of empirically reliable estimates of the amount of organics input to AD that is converted to energy output versus remaining in the digestate. This digestate can be processed through aerobic composting into a compost product similar to the compost output from aerobic composting, assuming that the same type of organic materials are managed under AD as are managed via AC. The magnitude of any trade-off between generation of energy and production of compost in an AD system appears to be critical for ranking AC and AD for differing types of organics diversion streams. These results emphasize how little we generally know, and exemplify the fact that in the reviewed literature no single EOL management method consistently topped all other management options across all environmental impacts, and that future studies must strive to match existing analytical boundaries and alternatives assessed to increase knowledge if as a community we expect to be able to make even more generalized conclusions.  相似文献   

15.
By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence of the active operations (i.e., leachate recirculation, waste flushing and air injection) on the environmental performance, the time horizon of the assessment has been split into two time periods: years 0-15 and 16-100. Results show that if these operations are combined with gas utilization and leachate treatment, they are able to shorten the time frame that emissions lead to environmental impacts of concern.  相似文献   

16.
1,4‐Dioxane remediation is challenging due to its physiochemical properties and low target treatment levels. As such, applications of traditional remediation technologies have proven ineffective. There are a number of promising remediation technologies that could potentially be scaled for successful application to groundwater restoration. Sustainable remediation is an important consideration in the evaluation of remediation technologies. It is critically important to consider sustainability when new technologies are being applied or new contaminants are being treated with traditional technologies. There are a number of social, economic, and environmental drivers that should be considered when implementing 1,4‐dioxane treatment technologies. This includes evaluating sustainability externalities by considering the cradle‐to‐grave impacts of the chemicals, energy, processes, transportation, and materials used in groundwater treatment. It is not possible to rate technologies as more or less sustainable because each application is context specific. However, by including sustainability thinking into technology evaluations and implementation plans, decisions makers can be more informed and the results of remediation are likely to be more effective and beneficial. There are a number sustainable remediation frameworks, guidance documents, footprint assessment tools, life cycle assessment tools, and best management practices that can be utilized for these purposes. This paper includes an overview describing the importance of sustainability in technology selection, identifies sustainability impacts related to technologies that can be used to treat 1,4‐dioxane, provides an approximating approach to assess sustainability impacts, and summarizes potential sustainability impacts related to promising treatment technologies. ©2016 Wiley Periodicals, Inc.  相似文献   

17.
The current study was undertaken to address the general question of whether there is an environmental advantage for renewable, starch?Cpolyvinyl alcohol (PVOH) biopolymer blends over petrochemical polymers. This was addressed using life cycle assessment (LCA) over a set of multiple case studies based on a consistent set of parameters and methodological background. A group of starch?CPVOH blended biopolymers derived from different feedstocks (wheat, potato, maize) were compared with high density polyethylene (HDPE), low density polyethylene (LDPE) and expanded polystyrene (EPS) in a range of applications. The results suggest that a general environmental advantage does not exist for the starch?CPVOH blended biopolymers over their petrochemical counterparts in all applications and, instead, a case-by-case approach is necessary to evaluate environmental pros and cons, based on specific comparisons. Overall, starch?CPVOH biopolymers were found to offer environmentally superior options to LDPE in thermal packaging applications. However, this was not the case in other applications, where the outcome of comparisons between starch?CPVOH biopolymers and HDPE/EPS varied according to various factors, including the specific end-of-life scenarios and the recycled content of the petrochemical polymers. A hierarchy of critical parameters for LCA-based decision-making concerning starch?CPVOH biopolymers is suggested as a general outcome of this research.  相似文献   

18.
Landfills at various stages of development, depending on their age and location, can be found throughout Europe. The type of facilities goes from uncontrolled dumpsites to highly engineered facilities with leachate and gas management. In addition, some landfills are designed to receive untreated waste, while others can receive incineration residues (MSWI) or residues after mechanical biological treatment (MBT). Dimension, type and duration of the emissions from landfills depend on the quality of the disposed waste, the technical design, and the location of the landfill. Environmental impacts are produced by the leachate (heavy metals, organic loading), emissions into the air (CH(4), hydrocarbons, halogenated hydrocarbons) and from the energy or fuel requirements for the operation of the landfill (SO(2) and NO(x) from the production of electricity from fossil fuels). To include landfilling in an life-cycle assessment (LCA) approach entails several methodological questions (multi-input process, site-specific influence, time dependency). Additionally, no experiences are available with regard to mid-term behaviour (decades) for the relatively new types of landfill (MBT landfill, landfill for residues from MSWI). The present paper focuses on two main issues concerning modelling of landfills in LCA: Firstly, it is an acknowledged fact that emissions from landfills may prevail for a very long time, often thousands of years or longer. The choice of time frame in the LCA of landfilling may therefore clearly affect the results. Secondly, the reliability of results obtained through a life-cycle assessment depends on the availability and quality of Life Cycle Inventory (LCI) data. Therefore the choice of the general approach, using multi-input inventory tool versus empirical results, may also influence the results. In this paper the different approaches concerning time horizon and LCI will be introduced and discussed. In the application of empirical results, the presence of data gaps may limit the inclusion of several impact categories and therefore affect the results obtained by the study. For this reason, every effort has been made to provide high-quality empirical LCI data for landfills in Central Europe.  相似文献   

19.
Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.  相似文献   

20.
Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号