首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real sample of biomass as feed, the fouling-suppression performance using DEP with different electrical field intensities (60-160 V) and different frequencies (50-1000 Hz) was investigated. The fouling-suppression performance was found to relate closely with the intensity and frequency of the electrical field. A stronger electrical field was found to better recover the filtrate flux. This is because of a stronger DEP force acting on the biomass particles close to themembrane's surface. Above an intensity and frequency value of 130 V and 1 kHz, respectively the permeate flux was reduced due to an electrothermal effect.  相似文献   

2.
A submerged internal circulating membrane coagulation reactor(MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride(PACl) was used as coagulant,and a hydrophilic polyvinylidene fluoride(PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure(TMP), zeta potential(ZP) of the suspended particles in raw water, and KMnO_4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China(GB 5749-2006), as evaluated by turbidity(1 NTU) and total organic carbon(TOC)(5 mg/L)measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon(DOC) in the raw water also increased with increasing TMP in the range of 0.01–0.05 MPa. High ZP induced by PACl, such as 5–9 mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity.However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1–2 mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO_4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes.  相似文献   

3.
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. > 10, 1–10, 0.5–1, 0.2–0.5 and < 0.2 μm) for a purple soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (< 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles (< 0.2 μm). Vermiculite, illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the < 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties.  相似文献   

4.
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, pH = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.  相似文献   

5.
A field enhanced flow reactor using bias assisted photocatalysis was developed for bacterial disinfection in lab-synthesized and natural waters. The reactor provided complete inactivation of contaminated waters with flow rates of 50 m L/min. The device consisted of titanium dioxide nanotube arrays, with an externally applied bias of up to 6 V. Light intensity, applied voltage, background electrolytes and bacteria concentration were all found to impact the device performance. Complete inactivation of Escherichia coli W3110(~ 8 × 10~3CFU/m L) occurred in 15 sec in the reactor irradiated at 25 m W/cm~2 with an applied voltage of 4 V in a 100 ppm NaCl solution. Real world testing was conducted using source water from Emigration Creek in Salt Lake City, Utah. Disinfection of natural creek water proved more challenging, providing complete bacterial inactivation after 25 sec at 6 V. A reduction in bactericidal efficacy was attributed to the presence of inorganic and organic species, as well as the increase in robustness of natural bacteria.  相似文献   

6.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

7.
Knowledge of particle number size distribution(PND) and new particle formation(NPF)events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality,haze,and human health.In this study,seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer(SMPS) at four sites in Southern China,including three urban sites and one background site.Particles were measured in the size range of15-515 nm,and the median particle number concentrations(PNCs) were found to vary in the range of 0.3× 10~4-2.2 × 10~4 cn~(-3) at the urban sites and were approximately 0.2 × 10~4 cm~(-3) at the background site.The peak diameters at the different sites varied largely from 22 to 102 nm.The PNCs in the Aitken mode(25-100 nm) at the urban sites were up to 10 times higher than they were at the background site,indicating large primary emissions from traffic at the urban sites.The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events.The frequencies of NPF events at the different sites were0%-30%,with the highest frequency occurring at an urban site during autumn.With higher SO_2 concentrations and higher ambient temperatures being necessary,NPF at the urban site was found to be more influenced by atmospheric oxidizing capability,while NPF at the background site was limited by the condensation sink.This study provides a unique dataset of particle number and size information in various environments in Southern China,which can help understand the sources,formation,and the climate forcing of aerosols in this quickly developing region,as well as help constrain and validate NPF modeling.  相似文献   

8.
The kinetics of adsorption and parameters of equilibrium adsorption of Methylene Blue(MB)on hybrid laponite-multi-walled carbon nanotube(NT)particles in aqueous suspensions were determined.The laponite platelets were used in order to facilitate disaggregation of NTs in aqueous suspensions and enhance the adsorption capacity of hybrid particles for MB.Experiments were performed at room temperature(298 K),and the laponite/NT ratio(X_l)was varied in the range of 0–0.5.For elucidation of the mechanism of MB adsorption on hybrid particles,the electrical conductivity of the system as well as the electrokinetic potential of laponite-NT hybrid particles were measured.Three different stages in the kinetics of adsorption of MB on the surface of NTs or hybrid laponite-NT particles were discovered to be a fast initial stage Ⅰ(adsorption time t=0–10 min),a slower intermediate stage Ⅱ(up to t=120 min)and a long-lasting final stage Ⅲ(up to t=24 hr).The presence of these stages was explained accounting for different types of interactions between MB and adsorbent particles,as well as for the changes in the structure of aggregates of NT particles and the long-range processes of restructuring of laponite platelets on the surface of NTs.The analysis of experimental data on specific surface area versus the value of X_l evidenced in favor of the model with linear contacts between rigid laponite platelets and NTs.It was also concluded that electrostatic interactions control the first stage of adsorption at low MB concentrations.  相似文献   

9.
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 0.1,2–0.1,and 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.  相似文献   

10.
Particles from ambient air and combustion sources including vehicle emission, coal combustion and biomass burning were collected and chemically pretreated with the purpose of obtaining isolated BC (black carbon) samples. TEM (transmission electron microscopy) results indicate that BC from combustion sources shows various patterns, and airborne BC appears spherical and about 50 nm in diameter with a homogeneous surface and turbostratic structure. The BET (Barrett–Emmett–Teller) results suggest that the surface areas of these BC particles fall in the range of 3–23 m2/g, with a total pore volume of 0.03–0.05 cm3/g and a mean pore diameter of 7–53 nm. The nitrogen adsorption–desorption isotherms are indicative of the accumulation mode and uniform pore size. O2-TPO (temperature programmed oxidation) profiles suggest that the airborne BC oxidation could be classified as the oxidation of amorphous carbon, which falls in the range of 406–490°C with peaks at 418, 423 and 475°C, respectively. Generally, the BC characteristics and source analysis suggest that airborne BC most likely comes from diesel vehicle emission at this site.  相似文献   

11.
Bottom ash is the major by-product of municipal solid waste incineration(MSWI), and is often reused as an engineering material, such as road-base aggregate. However, some metals(especially aluminum) in bottom ash can react with water and generate gas that could cause expansion and failure of products containing the ash; these metals must be removed before the ash is utilized. The size distribution and the chemical speciation of metals in the bottom ash from two Chinese MSWI plants were examined in this study, and the recovery potential of metals from the ash was evaluated. The metal concentrations in these bottom ashes were lower than that generated in other developed countries. Specifically, the contents of Al,Fe, Cu and Zn were 18.9–29.2, 25.5–32.3, 0.7–1.0 and 1.6–2.5 g/kg, respectively. Moreover,44.9–57.0 wt.% of Al and 55.6–75.4 wt.% of Fe were distributed in bottom ash particles smaller than 5 mm. Similarly, 46.6–79.7 wt.% of Cu and 42.9–74.2 wt.% of Zn were concentrated in particles smaller than 3 mm. The Fe in the bottom ash mainly existed as hematite, and its chemical speciation was considered to limit the recovery efficiency of magnetic separation.  相似文献   

12.
By aggregating MODIS(moderate-resolution imaging spectroradiometer) AOD(aerosol optical depth) and OMI(ozone monitoring instrument) UVAI(ultra violet aerosol index)datasets over 2010–2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin(17–23°N, 105–110°E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP(cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km.In contrast, aerosol loading in the low atmosphere(below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula(NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.  相似文献   

13.
Polycyclic aromatic hydrocarbons(PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler(BB1) and one specially designed(BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography–mass spectrometry(GC–MS). The total emission factors(EFs) of PAHs ranged from 0.0064 to0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar.The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts.  相似文献   

14.
As one of the transition metals, vanadium (V) (V(V)) in trace amounts represents an essential element for normal cell growth, but becomes toxic when its concentration is above 1 mg/L. V(V) can alter cellular differentiation, gene expression, and other biochemical and metabolic phenomena. A feasible method to detoxify V(V) is to reduce it to V(IV), which precipitates and can be readily removed from the water. The bioreduction of V(V) in a contaminated groundwater was investigated using autohydrogentrophic bacteria and hydrogen gas as the electron donor. Compared with the previous organic donors, H2 shows the advantages as an ideal electron donor, including nontoxicity and less production of excess biomass. V(V) was 95.5% removed by biochemical reduction when autohydrogentrophic bacteria and hydrogen were both present, and the reduced V(IV) precipitated, leading to total-V removal. Reduction kinetics could be described by a first-order model and were sensitive to pH and temperature, with the optimum ranges of pH 7.5–8.0 and 35–40°C, respectively. Phylogenetic analysis by clone library showed that the dominant species in the experiments with V(V) bioreduction belonged to the β-Proteobacteria. Previously known V(V)-reducing species were absent, suggesting that V(V) reduction was carried out by novel species. Their selective enrichment during V(V) bioreduction suggests that Rhodocyclus, a denitrifying bacterium, and Clostridium, a fermenter known to carry out metal reduction, were responsible for V(V) bioreduction.  相似文献   

15.
Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2 O were used to prepare poly(vinylidene fluoride-co-chlorotrifluoroethylene)(PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation(DCMD) of 3.5 g/L Na Cl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol(PEG),organic acids, Li Cl, Mg Cl2, and Li Cl/H2 O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate(DBP) showed a nonporous surface and symmetrical cross-section. When H2 O and Li Cl/H2 O mixtures were also used as additives, they were beneficial for solid–liquid demixing, especially when Li Cl/H2 O mixed additives were used. The membrane prepared with 5% Li Cl + 2% H2 O achieved a flux of24.53 kg/(m2·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.  相似文献   

16.
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5 hr at unadjusted pH 3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5 mmol/L Ca2 +, active layer facing draw solution (AL-DS) and 1.5 mol/L NaCl (DS); 2. No Ca2 +, active layer-facing FS (AL-FS) and 4 mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH 3.56, and larger than the two values at pH 9.00. This manifested that, at pH 3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH 9.00, the mutual effects of OA and BSA eased the membrane fouling.  相似文献   

17.
Shortage in phosphorus (P) resources and P wastewater pollution is considered as a serious problem worldwide. The application of modified biochar for P recovery from wastewater and reuse of recovered P as agricultural fertilizer is a preferred process. This work aims to develop a calcium and magnesium loaded biochar (Ca–Mg/biochar) application for P recovery from biogas fermentation liquid. The physico-chemical characterization, adsorption efficiency, adsorption selectivity, and postsorption availability of Ca-Mg/biochar were investigated. The synthesized Ca–Mg/biochar was rich in organic functional groups and in CaO and MgO nanoparticles. With the increase in synthesis temperature, the yield decreased, C content increased, H content decreased, N content remained the same basically, and BET surface area increased. The P adsorption of Ca–Mg/biochar could be accelerated by nano-CaO and nano-MgO particles and reached equilibrium after 360 min. The process was endothermic, spontaneous, and showed an increase in the disorder of the solid–liquid interface. Moreover, it could be fitted by the Freundlich model. The maximum P adsorption amounts were 294.22, 315.33, and 326.63 mg/g. The P adsorption selectivity of Ca–Mg/biochar could not be significantly influenced by the typical pH level of biogas fermentation liquid. The nano-CaO and nano-MgO particles of Ca–Mg/biochar could reduce the negative interaction effects of coexisting ions. The P releasing amounts of postsorption Ca–Mg/biochar were in the order of Ca–Mg/B600 > Ca–Mg/B450 > Ca–Mg/B300. Results revealed that postsorption Ca–Mg/biochar can continually release P and is more suitable for an acid environment.  相似文献   

18.
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a methanogenic reactor for a biochemical methane potential(BMP) test lasting up to 60 days. Relative to the methane production of food waste stored for 0–1 day(285–308 m L/g-added volatile solids(VSadded)), that after2–4 days and after 5–12 days of storage increased to 418–530 and 618–696 m L/g-VSadded,respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5–7 days of storage of food waste in anaerobic digestion treatment plants.  相似文献   

19.
Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9–3.8 days (field) and 2.8–10.3 days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water < straw < soil, and soil was characterized as the major absorber. The ultimate residues in rice grain were below the maximum residue limit (MRL) with a harvest interval of 14 days. The chronic exposure for chlorpyrifos was rather low compared to the acceptable daily intake (ADI = 0.01 mg/kg bw) due to rice consumption. The chronic exposure risk from chlorpyrifos in rice grain was 5.90% and 1.30% ADI from field and laboratory results respectively. Concerning the acute dietary exposure, intake estimated for the highest chlorpyrifos level did not exceed the acute reference dose (ARfD = 0.1 mg/kg bw). The estimated short-term intakes (ESTIs) were 0.78% and 0.25% of the ARfD for chlorpyrifos. The results showed that the use of chlorpyrifos in rice paddies was fairly safe for consumption of rice grain by consumers.  相似文献   

20.
In order to investigate the oxygen tolerance capacity of upflow anaerobic solid-state(UASS)with anaerobic filter(AF) system, the effect of microaeration on thermophilic anaerobic digestion of maize straw was investigated under batch conditions and in the UASS with AF system. Aeration intensities of 0–431 m L O2/gvswere conducted as pretreatment under batch conditions. Aeration pretreatment obviously enhanced anaerobic digestion and an aeration intensity of 431 m L O2/gvsincreased the methane yield by 82.2%. Aeration intensities of 0–355 m L O2/gvswere conducted in the process liquor circulation of the UASS with AF system. Dissolved oxygen(DO) of UASS and AF reactors kept around 1.39 ±0.27 and 0.99 ± 0.38 mg/L, respectively. p H was relatively stable around 7.11 ± 0.04. Volatile fatty acids and soluble chemical oxygen demand concentration in UASS reactor were higher than those in AF reactor. Methane yield of the whole system was almost stable at 85 ± 7 m L/gvs as aeration intensity increased step by step. The UASS with AF system showed good oxygen tolerance capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号