首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In order to investigate changes in the mutagenicity of fenitrothion during its biodegradation in solution, measurements were conducted at intervals in batch cultures incubated under anaerobic or aerobic conditions. Fenitrothion-degrading bacteria were obtained from a green onion field on the west side of Gifu University, Japan. Fenitrothion was almost completely decomposed by day 12 under both types of incubation condition. The indirect mutagenicity of the solution to strains YG1029 and YG1042, however, increased markedly during anaerobic biodegradation. The increase in mutagenicity was partially due to amino-fenitrothion, a metabolite formed during anaerobic biodegradation of fenitrothion.  相似文献   

2.
The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG 1024 (a frameshift-detecting strain) and YG 1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG 1024 and YG 1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG 1029 but did not change significantly for YG 1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG 1024 and YG 1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

3.

The mutagenicity of chlornitrofen (CNP)-containing solutions has been reported to increase during anaerobic biodegradation. In the present study, the fate of this increased mutagenicity under subsequent aerobic and anaerobic incubation conditions was investigated using two Salmonella tester strains, YG1024 (a frameshift-detecting strain) and YG1029 (a base-pair-substitution-detecting strain). Mutagenicity for both YG1024 and YG1029 strains increased during nine-day anaerobic biodegradation. During subsequent anaerobic incubation, the increased mutagenicity decreased gradually for YG1029 but did not change significantly for YG1024. By contrast, the increased mutagenicity decreased rapidly after the conversion to aerobic incubation for both YG1024 and YG1029 strains. The rapid decrease in mutagenicity during aerobic incubation was due to decreases, not only in an identified mutagenic metabolite (CNP-amino) but also in unidentified mutagenic metabolites.  相似文献   

4.
Matsushita T  Matsui Y  Saeki R  Inoue T 《Chemosphere》2005,61(8):1134-1141
Previous studies have revealed that the mutagenicity of fenitrothion increases during anaerobic biodegradation, suggesting that this insecticide's mutagenicity could effectively increase after it pollutes anaerobic environments such as lake sediments. To investigate possible changes to the mutagenicity of fenitrothion under aerobic conditions after it had already been increased by anaerobic biodegradation, batch incubation cultures were maintained under aerobic conditions. The mutagenicity, which had increased during anaerobic biodegradation, decreased under aerobic conditions with aerobic or facultative bacteria, but did not disappear completely in 22 days. In contrast, it did not change under aerobic conditions without bacteria or under continued anaerobic conditions. These observations suggest that the mutagenicity of anaerobically metabolized fenitrothion would not necessarily decrease after it arrives in an aerobic environment: this would depend on the presence of suitable bacteria. Therefore, fenitrothion-derived mutagenic compounds may pollute the water environment, including our drinking water sources, after accidental pollution of aerobic waters. Although amino-fenitrothion generated during anaerobic biodegradation of fenitrothion was the principal mutagen, non-trivial contributions of other, unidentified metabolites to the mutagenicity were also observed.  相似文献   

5.
We aimed to: (1) evaluate the change in mutagenicity of a fenitrothion-containing solution during photolysis and (2) elucidate mutagenic compounds that were possible major contributors to mutagenicity. A batch test involving irradiation by natural sunlight was conducted on the solution, and then HPLC fractionation, mutagenicity testing, and gas chromatography-mass spectrometry (GC-MS) analysis were performed on the irradiated solution. During the 15-day photolysis, fenitrothion was almost completely decomposed, and 34 transformed products (TPs) were generated. Photolysis decreased the mutagenicity of the fenitrothion-containing solution for base-pair-substitution-detecting tester strains (YG1026 and YG1029) but increased mutagenicity for frameshift-detecting tester strains (YG1021 and YG1024). One TP was identified as a potential source of the increased mutagenicity; its molecular formula was estimated to be (CH(3)O)(2)PS-O-C(8)H(6)NO.  相似文献   

6.
Abstract

Ambient air particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) samples were collected during summer and autumn using a Staplex high-volume air sampler. They were later extracted with dichloromethane in a Soxhlet apparatus. Polyaromatic hydrocarbon (PAH) content in extracts was determined by the high-performance liquid chromatography technique using fluorescence detection, whereas the nitro-PAH content was determined by gas chromatography using mass detection. Four Salmonella typhimurium strains (TA98, TA100, YG1041, and YG1042) were used in assays conducted with and without metabolic activation. The extracts were also tested with the SOS chromotest supplied by Environmental Biodetection Products Incorporated. The obtained results confirmed the Salmonella assay and the SOS chromotest usability for the purpose of atmospheric pollution monitoring within an urban agglomeration. The atmospheric pollution extracts under examination differed among each other regarding total content and percentage of individual compounds, depending on the season of sampling. The highest total PAH content and the highest nitro-PAH content in the tested samples as well as the most extensive range of detected compounds were found in the autumn season (heating season). The highest mutagenicity was noted for PM2.5 samples collected in autumn. The high values of mutagenicity ratios and induction factors were obtained from assays carried out with and without metabolic activation, which is an argument for the presence of promutagens and direct mutagens. The YG1041 strain proved to be the most effective in detection of mutagenicity of the suspended dust extracts because of its notably high sensitivity to nitro-aromatic compounds. The SOS chromotest was very sensitive to a large spectrum of genotoxic air pollutants and showed a high degree of similarity with the results of the Salmonella assay. In comparison with the frequently used Ames test, the SOS chromotest enables quick analysis of the genotoxic effects of samples using only one tester strain. In addition, its miniaturized design decreases the consumption of tested samples.  相似文献   

7.
In the routine São Paulo state (Brazil) surface water quality-monitoring program, which includes the Salmonella microsome mutagenicity assay as one of its parameters, a river where water is taken and treated for drinking water purposes has repeatedly shown mutagenic activity. A textile dyeing facility employing azo-type dyes was the only identifiable source of mutagenic compounds. We extracted the river and drinking water samples with XAD4 at neutral and acidic pH and with blue rayon, which selectively adsorbs polycyclic compounds. We tested the industrial effluent, raw, and treated water and sediment samples with YG1041 and YG1042 and compared the results with the TA98 and TA100 strains. The elevated mutagenicity detected with YG-strains suggested that nitroaromatics and/or aromatic amines were causing the mutagenicity detected in the samples analyzed. Positive responses for the blue rayon extracts indicated that mutagenic polycyclic compounds were present in the water samples analyzed. The mutagen or mixture of mutagens present in the effluent and water samples cause mainly frameshift mutations and are positive with and without metabolic activation. The Salmonella assay combined with different extraction procedures proved to be very useful in the identification of the origin of the pollution and in the identification of the classes of chemical compounds causing the mutagenic activity in the river analyzed.  相似文献   

8.
Anabaena and Aulosira fertilissima showed a marked ability to accumulate DDT, fenitrothion and chlorpyrifos. Although the maximum accumulation of DDT was almost the same in both organisms, there were significant differences in their abilities to accumulate fenitrothion and chlorpyrifos. Patterns of uptake of DDT under different treatments were also similar in both Anabaena and Aulosira, but there were significant differences in the patterns of accumulation of fenitrothion between these two organisms. In Aulosira the maximum accumulation of fenitrothion was observed on the second day, whereas, in Anabaena, maximum accumulation was noticed on the first day. A completely different pattern of accumulation of chlorpyrifos was observed in Aulosira, which continued to accumulate chlorpyrifos throughout the experimental period. Bioconcentration of DDT in Anabaena and Aulosira ranged from 3 to 1568 ppm (microg g(-1)) and 6 to 1429 ppm, respectively. Bioconcentration of fenitrothion and chlorpyrifos in Anabaena varied from 53 to 3467 ppm and 7 to 6779 ppm, respectively. In Aulosira the bioconcentration varied from 100 to 6651 ppm and 53 to 3971 ppm for fenitrothion and chlorpyrifos, respectively. Anabaena and Aulosira metabolised DDT to DDD and DDE. Amounts of these DDT metabolites detected in the organisms were dependent on the concentration of treatment. DDD was the major, and DDE the minor, metabolite. These organisms were not able to metabolise the organophosphorus insecticides, fenitrothion and chlorpyrifos.  相似文献   

9.
The aerobic biodegradation of commercial nonylphenol ethoxylate (NPE) mixture and alkali lignin was studied using the OECD headspace test accompanied by the simultaneous measurement of ecotoxicity directly from the biodegradation liquors and by the follow-up of the chemical composition of the studied chemicals. NPE degradation was dependent on the inoculum source: approximately 40% of NPE was mineralized into CO2 during the 4-week experiment when inoculum from Helsinki City wastewater treatment plant (WWTP) was used, and only 12% was mineralized when inoculum from Jyväskylä City WWTP was used. Chemical analyses revealed a shift in the ethoxylate chain length from longer to shorter soon after the beginning of the NPE biodegradation tests. At the same time also toxicity (reverse electron transport assay, RET) and estrogenic activity (human estrogen receptor yeast) measured directly from the biodegradation liquors decreased. In case of alkali lignin, approximately 11% was mineralized in the test and chemical analysis showed in maximum a 30% decrease in lignin concentration. Toxicity of lignin biodegradation liquors started to decrease in the beginning of the test, but became more toxic towards the end of the test again. Especially RET assay proved to be sensitive enough for measuring toxicity changes directly from biodegradation liquors, although a concentrating treatment of the liquors is recommended for a more detailed characterization and identification of toxic metabolites.  相似文献   

10.
Ishii S  Hisamatsu Y  Inazu K  Kobayashi T  Aika K 《Chemosphere》2000,41(11):1809-1819
In order to clarify the contribution of nitrated products to the direct-mutagenic activity of products of the reactions of benzo[a]pyrene in NO2-air under various conditions, heterogeneous reactions of BaP deposited on filter in the air containing 10 ppm of NO2 have been conducted in dark or under photoirradiation. The reaction products have been analyzed by gas chromatography and mutagenicity of the products fractionated by preparative HPLC was assayed for Salmonella typhimurium strains TA98 and YG1024 in the absence of S9 mix. 3,6-dinitrobenzo[a]pyrene and 1,3-dinitrobenzo[a]pyrene, which are strong direct-acting mutagens, largely contributed to the total direct-acting mutagenicity of the dark reaction products in NO2-air. On the other hand, both the dark reaction in the presence of O3 and the photoreaction in NO2-air resulted in the formation of much smaller amounts of nitrobenzo[a]pyrenes than that observed in the dark reaction in the absence of O3. These results show that the contribution of other direct-acting mutagens to the total direct-acting mutagenicity of the products in these reactions should be considered. Benzo[a]pyrene lactones were identified in a highly mutagenic fraction of the products of the dark reaction in the presence of O3 and photoreaction and a nitrobenzo[a]pyrene lactone was also identified in a highly mutagenic fraction of the dark reaction products in the presence of O3. Nitrated oxygenated benzo[a]pyrene derivatives such as nitrobenzo[a]pyrene lactone were considered to largely contribute to direct-acting mutagenicity of the products of the dark reaction in the presence of O3 and photoreaction.  相似文献   

11.
AT Lemos  MV Coronas  JA Rocha  VM Vargas 《Chemosphere》2012,89(9):1126-1134
Organisms in the environment are exposed to a mixture of pollutants. Therefore the purpose of this study was to analyze the mutagenicity of organic and inorganic responses in two fractions of particulates (TSP and PM2.5) and extracts (organic and aqueous). The mutagenicity of organic and aqueous particulate matter extracts from urban-industrial and urban-residential areas was evaluated by Salmonella/microsome assay, through the microsuspension method, using strain TA98 with and without liver metabolization. Additionally, strains YG1021 and YG1024 (nitro-sensitive) were used for organic extracts. Aqueous extracts presented negative responses for mutagenesis and cytotoxicity was detected in 50% of the samples. In these extracts the presence of potential bioavailable metals was identified. All organic extracts presented mutagens with a higher potential associated with PM2.5. This study presents a first characterization of PM2.5 in Brazil, through the Salmonella/microsome assay. The evaluation strategy detected the anthropic influence of groups of compounds characteristically found in urban and industrial areas, even in samples with PM values in accordance with quality standards. Thus, the use of a genotoxic approach in areas under different anthropic influences will favor the adoption of preventive measures in the health/environment relation.  相似文献   

12.
Pyrene and phenanthrene degradation was examined in both single and binary slurry systems for three different natural soils. It was found that the amount of total expandable clays (smectite and vermiculite) was in a good agreement with the achieved rate and extent of biodegradation. For instance, the intrinsic phenanthrene biodegradation rate was 626 microg/L/day for the soil with the largest expandable clay and 3203 microg/L/day for the soil with the least. Similarly, the smallest total pyrene biodegradation (65%) was found for the soil rich in expandable clays, compared to an 82% pyrene reduction in the soil that had the lowest amount. Mass transfer limitation after compound sorption to the clays was more pronounced for the more hydrophobic pyrene. In the presence of phenanthrene, total pyrene biodegradation increased by 2 to 7% due to cometabolism, while the total phenanthrene biodegradation was only enhanced by 0.5 to 5% in the binary system. This research demonstrated that expandable clays might govern the substrate availability to microorganisms and microbial accessibility to substrates. Therefore, the contribution of organic matter and expandable clays to sorption, desorption and biodegradation should be taken equally into account in order to better understand complex bioremediation issues.  相似文献   

13.
Eighteen fungal strains were tested in toxicity assays with surfactants in order to select surfactants and strains tolerant to surfactants for degradation assays. Two nonionic surfactants were used, an alkylphenol ethoxylate, Triton X-100, a sorbitan ester, Tween 80 and an anionic surfactant, sodium dodecyl sulfate. Solubilization and biodegradation tests were conducted in liquid medium batch; fluorene was quantified by HPLC. Results showed the enhancement of fluorene solubilization by the three surfactants, good tolerance of nonionic surfactants by the fungal strains and the enhancement of the biodegradation of fluorene by Doratomyces stemonitis (46-62%) and Penicillium chrysogenum (28-61%) in the presence of Tween 80 (0.324 mM) after 2 days.  相似文献   

14.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

15.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using a bioassay-directed fractionation approach. Sample extracts were fractionated using an alumina/Sephadex gel clean-up procedure to afford non-polar aromatic fractions which were characterized using chemical analyses and the Ames/microsome bacterial assay in Salmonella typhimurium strains YG1025 with the addition of oxidative metabolism (S9), and YG1024 without S9. Non-polar aromatic fractions of selected samples were separated by normal phase HPLC into 1-min fractions which were subjected to bioassay analyses. The bioassays using strain YG1025+S9, a TA100-type strain, were performed to assess genotoxicity arising from the presence of polycyclic aromatic hydrocarbons (PAH). Fractions which exhibited mutagenic activity contained PAH with molecular masses of 252, 276 and 278 amu; these fractions contained over 80% of the genotoxicity attributable to PAH. Individual compounds identified using Gas Chromatography-Mass Spectrometry analyses in these active fractions included benzo[a]pyrene, indeno[cd]pyrene and dibenz[a,h]anthracene. The YG1025+S9 mutagenic activity profiles were similar for all samples. Mutagenic activity profiles generated using strain YG1024-S9, a TA98-type strain sensitive to compounds characteristic of mobile source emissions, were very different. The mutagenic activities in strain YG1024-S9 were greatest for harbour-suspended sediment samples collected from sites impacted by a major tributary. Suspended sediments collected near areas known to contain high levels of coal tar-contamination in the bottom sediments contained higher levels of genotoxic PAH than suspended sediments collected from other areas of the harbour.  相似文献   

16.
One of the foremost environmental issues having a key role in the feasibility study of polycyclic aromatic hydrocarbons (PAHs) biodegradation is the concern of the toxicity of the formed intermediate metabolites. In this study, biodegradability of phenanthrene (PHE) at initial concentrations of 100–500 ppm and its hydroxylated intermediate metabolites (IMs) in aqueous phase were investigated using free cells (FC) and immobilized cells (IC) in polyvinyl alcohol (PVA) cryogel beads. Results showed that both FC and IC systems were capable of complete PHE biodegradation at initial concentrations lower than 250 ppm after 7 days, though IC system showed a higher PHE removal rate. The maximum IM concentrations observed at initial PHE concentrations of 100 and 250 ppm were 20 and 49 ppm for FC system, whereas 7.4 and 19 ppm were obtained for IC system, respectively, and IMs were finally removed after 7 days. Similarly, at 500 ppm, IC system resulted in higher removal of PHE compared to FC system. However, during the 7-day period for FC system, IMs concentration rose up to 59 ppm, while for IC system, IMs concentration reaches a maximum at day 5 and thereafter it follows a negative rate. It was also shown that resorcinol as an indicator of hydroxylated aromatic metabolites at concentrations of 0–100 ppm can well be biodegraded by free and immobilized cell systems. No prohibition on PHE biodegradation could hence occur due to IMs formation. Additionally, stability of IC system was examined in repeated-batch cultures, showing the effective removal of PHE up to nine reuse cycles.  相似文献   

17.
During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.  相似文献   

18.
Few techniques exist to measure the biodegradation of recalcitrant organic compounds such as chlorinated hydrocarbons (CHC) in situ, yet predictions of biodegradation rates are needed for assessing monitored natural attenuation. Traditional techniques measuring O2, CO2, or chemical concentrations (in situ respiration, metabolite and soil air monitoring) may not be sufficiently sensitive to estimate biodegradation rates for these compounds. This study combined isotopic measurements (14C and delta13C of CO2 and delta13C of CHCs) in conjunction with traditional methods to assess in situ biodegradation of perchloroethylene (PCE) and its metabolites in PCE-contaminated vadose zone sediments. CHC, ethene, ethane, methane, O2, and CO2 concentrations were measured over 56 days using gas chromatography (GC). delta13C of PCE, trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE), delta13C and 14C of vadose zone CO2 and sediment organic matter, and delta13C, 14C, and deltaD of methane were measured using a GC-isotope ratio mass spectrometer or accelerator mass spectrometer. PCE metabolites accounted for 0.2% to 18% of CHC concentration suggesting limited reductive dechlorination. Metabolites TCE and DCE were significantly enriched in (13)C with respect to PCE indicating metabolite biodegradation. Average delta13C-CO2 in source area wells (-23.5 per thousand) was significantly lower compared to background wells (-18.4 per thousand) indicating CHC mineralization. Calculated CHC mineralization rates were 0.003 to 0.01 mg DCE/kg soil/day based on lower 14C values of CO2 in the contaminated wells (63% to 107% modern carbon (pMC)) relative to the control well (117 pMC). Approximately 74% of the methane was calculated to be derived from in situ CHC biodegradation based on the 14C measurement of methane (29 pMC). 14C-CO2 analyses was a sensitive measurement for quantifying in situ recalcitrant organic compound mineralization in vadose zone sediments for which limited methodological tools exist.  相似文献   

19.
Resistance to fenitrothion and enzyme activities associated with the toxicity and metabolism of organophosphorus insecticides were measured in three genetically unique Daphnia magna clones collected from rice fields of Delta del Ebro (NE Spain) during the growing season and a lab sensitive clone. The studied clones showed up to sixfold differences in resistance to fenitrothion. The lack of correlation between in vitro sensitivity of acetylcholinesterase (AChE) to fenitrooxon and resistance to fenitrothion indicated that insensitivity of AChE to the most active oxon metabolite was not involved in the observed differences in resistance. Inhibition of mixed- function oxidases (MFOs) by piperonyl butoxide (PBO) increased the tolerance to fenitrothion by almost 20-fold in all clones without altering their relative ranking of resistance. Conversely, when exposed to fenitrooxon, the studied clones showed similar levels of tolerance, thus indicating that clonal differences in the conversion of fenitrothion to fenitrooxon by MFOs were involved in the observed resistance patterns. Despite that resistant clones showed over 1.5 higher activities of carboxilesterase (CbE) than sensitive ones, toxicity tests with 2-(O-cresyl)-4H-1,3,2-benzodioxaphosphorin-2 oxide, which is a specific inhibitor of these enzymes, evidenced that this system only contributed marginally to the observed clonal differences in tolerance. Glutathione-S-transferases activity (GST) varied across clones but not under exposure to fenitrothion, and was only related with tolerance levels in the field clones. In summary, our results indicate that MFO mediated differences on the bio-activation of the phosphorotionate OP pesticide to its active oxon metabolite contributed mostly in explaining the observed moderate levels of resistance, whereas the activities of CbE and GST had only a marginal role.  相似文献   

20.
Peroxidative degradation of selected PCB: a mechanistic study   总被引:6,自引:0,他引:6  
Köller G  Möder M  Czihal K 《Chemosphere》2000,41(12):326-1834
The enzyme-induced decomposition and biodegradation of PCB were investigated. 2,5-Dichlorobiphenyl (PCB 9) and 2,2,5,5-tetrachlorobiphenyl (PCB 52) were used as example compounds to study efficiency and mechanism of the degradation processes. It was found that the application of horseradish peroxidase (HRP) together with defined amounts of hydrogen peroxide removed 90% of the initial concentration of PCB 9 and 55% of the initial concentration of PCB 52 from an aqueous solution after a reaction period of 220 min. Dechlorination was observed as the initial step. Although the metabolites identified were mainly chlorinated hydroxybiphenyls, benzoic acids and non-substituted 1,1-biphenyl, some higher chlorinated biphenyl isomers also appeared. The biodegradation of PCB 9 using the white rot fungus Trametes multicolor took about four weeks and reduction was about 80% of the initial concentration. The metabolites produced (dichlorobenzenes, chlorophenols and alkylated benzenes) were not quite the same as those observed upon incubation with HRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号