首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The ability of fungal strains to attack a composite material obtained from poly(vinyl alcohol) (PVA) and bacterial cellulose (BC) is investigated. The fungal strain tested was Aspergillus niger. This fungal strain was able to change not only the polymer surface from smoother to rougher, but also to disrupt the polymer. The degradation results were confirmed by visual observations, scanning electron microscopy (SEM) analyses, X-ray diffraction analyses and FTIR spectra of the film samples. SEM micrographs confirmed the growth of fungi on the composite film surface. The degree of microbial degradation depends on culture medium and on composition of polymeric materials, especially on PVA content. The biodegradation process is accelerated by the presence of glucose in the culture medium as an easily available carbon source.  相似文献   

2.
Journal of Polymers and the Environment - In this study eco-friendly composite films were prepared based on poly(vinyl alcohol) (PVA) containing different content of Basella alba stem extract (BA)...  相似文献   

3.
Controlled release fertilizer (CRF) hydrogels were prepared from poly(vinyl alcohol), poly(vinyl alcohol)/chitosan and chitosan using glutaraldehyde as a crosslinker. Intermolecular interactions of the CRF hydrogels were elucidated using FTIR. Water absorbency characteristics of the CRF hydrogels were also studied. It was found that the CRF hydrogels exhibited the equilibrium swelling ratio (SR) in the range 70–300%. The water retention of soil containing the CRF hydrogels was also examined. It was found that the CRF hydrogels increased the water retention of the soil. After 30 days, soil containing the PVA-, PVA/CS- and CS-hydrogels showed the water retention capacities of 25%, 10% and 4%, respectively. While the soil without the CRF hydrogel had already given off most of the water. The release behavior of potassium from the CRF hydrogels, both in deionized water and in soil, was investigated. In soil, the potassium release mechanism from the PVA- and PVA/CS-hydrogels were non-Fickian diffusion. On the other hand, the CS hydrogel showed, n value that was close to 1.0 corresponding to case II transport. In deionized water, all the CRF hydrogels showed small values of release exponent (n < 0.5) indicating a quasi-Fickian diffusion mechanism.  相似文献   

4.
Cultivation conditions affecting poly(vinyl alcohol) (PVA) degradation by a mixed bacterial culture of Bacillus sp. and Curtobacterium sp. were investigated. Bacterial strains used in this study were isolated from the watercourse and the sewage sludge of vinylonfibre mill by enrichments on PVA as the sole carbon source. The results showed that PVA was greatly degraded under the following conditions: 0.5% PVA as a substrate at the initial medium pH of 8 with 0.15% glucose and urea at C/U ratio 1.5:1 and 1% bacterial inoculum, at a temperature of 35 °C and a shaking speed of 110 rpm. The analysis of FTIR and 1H NMR spectra before and after biodegradation indicate fission of the PVA molecular chain during the incubation.  相似文献   

5.
Several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers were prepared and characterized. Cohesive and flexible cast films were obtained by blending lignocellulosic fibers derived from orange waste and PVA with or without cornstarch. Films were evaluated for their thermal stability, water permeability and biodegradation properties. Thermogravimetric analysis (TGA) indicated the suitability of formulations for melt processing, and for application as mulch films in fields at much higher temperatures. Composite films were permeable to water, but at the same time able to maintain consistency and composition upon drying. Chemical crosslinking of starch, fiber and PVA, all hydroxyl functionalized polymers, by hexamethoxymethylmelamine (HMMM) improved water resistance in films. Films generally biodegraded within 30 days in soil, achieving between 50–80% mineralization. Both starch and lignocellulosic fiber degraded much more rapidly than PVA. Interestingly, addition of fiber to formulations enhanced the PVA degradation.  相似文献   

6.
Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.  相似文献   

7.
This study presents the effect of biodegradation, in a composting medium, on properties of membrane-like crosslinked and noncrosslinked polyvinyl alcohol (PVA) and nanocomposites. The composting was carried out for 120 days and the biodegradation of these materials was characterized using various techniques. The changes in the PVA resin and nanocomposite surface topography and microstructure during composting were also characterized. The results from the analyses suggest biodegradation of PVA based materials in compost medium was mainly by enzymes secreted by fungi. The results also indicate that the enzymes degraded the amorphous regions of the specimens first and that the PVA crystallinity played an important role in its biodegradation. The surface roughness of the specimens was seen to increase with composting time as the microbial colonies grew which in turn facilitated further microorganism growth. All specimens broke into small pieces between 90 and 120 days of composting as a result of deep biodegradation. Glyoxal and malonic acid crosslinking decreased the PVA biodegradation rate slightly. Addition of highly crystalline microfibrillated cellulose and naturally occurring halloysite nanotubes in PVA based nanocomposites also decreased the biodegradation rate. The three factors: PVA crystallinity, crosslinking and additives, may be utilized effectively to extend the life of these materials in real life applications.  相似文献   

8.
Red mud emerges as the major waste material during production of alumina from bauxite by the Bayer??s process. Based on economics as well as environmental related issues, enormous efforts have been directed worldwide towards red mud management issues i.e. of utilization, storage and disposal. The present research work has been undertaken with an objective to explore the use of red mud as a reinforcing material in the polymer matrix as a low cost option. The silicate layered red mud was organophilized by aniline formaldehyde and to know the effect of various filler loading on the material properties of PVA-organophilized red mud composites, prepared by a conventional solvent casting technique and comparison of the same with that of the virgin poly (vinyl alcohol) (PVA), various characterizations was done. The modified red mud was typically characterized by X-ray diffraction. The X-ray diffraction pattern of the composite materials was also studied. The morphological image of the composite materials was studied by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was used to characterize the dispersion of the red mud within the composite materials. The surface topography of the composite materials was studied by Atomic Force Microscopy (AFM). The dielectric properties of composite materials were investigated in wide frequency ranges from 1?MHz to 1?GHz.  相似文献   

9.
Blends based on different ratios of starch (35–20%) and plasticizer (sugar; 0–15%) keeping the amount of poly(vinyl alcohol) (PVA) constant, were prepared in the form of thin films by casting solutions. The effects of gamma-irradiation on thermal, mechanical, and morphological properties were investigated. The studies of mechanical properties showed improved tensile strength (TS) (9.61 MPa) and elongation at break (EB) (409%) of the starch-PVA-sugar blend film containing 10% sugar. The mechanical testing of the irradiated film (irradiated at 200 Krad radiation dose) showed higher TS but lower EB than that of the non-radiated film. FTIR spectroscopy studies supported the molecular interactions among starch, PVA, and sugar in the blend films, that was improved by irradiation. Thermal properties of the film were also improved due to irradiation and confirmed by thermo-mechanical analysis (TMA), differential thermo-gravimetric analysis (DTG), differential thermal analysis (DTA), and thermo-gravimetric analysis (TGA). Surface of the films were examined by scanning electron microscope (SEM) image that supported the evidence of crosslinking obtained after gamma irradiation on the film. The water up-take and degradation test in soil of the film were also evaluated. In this study, sugar acted as a good plasticizing agent in starch/PVA blend films, which was significantly improved by gamma radiation and the prepared starch-PVA-sugar blend film could be used as biodegradable packaging materials.  相似文献   

10.
Poly[(disodium methylene malonate)-co-(vinyl alcohol)] [P(DSMM-VA)] and poly[(disodium ethoxymethylene malonate)-co-(vinyl alcohol)] [P(DSEMM-VA)] containing a poly(vinyl alcohol) (PVA) block as a biodegradable segment were prepared and their biodegradability and functionality were evaluated and compared with those of the corresponding fumarate and maleate copolymers. It was found that the 1,1-dicarboxylate-type copolymers, P(DSMM-VA) and P(DSEMM-VA), showed better biodegradability than the corresponding 1,2-dicarboxylate-type copolymers, P(DSF-VA) and P(DSM-VA). This improved biodegradability of P(DSMM-VA) and P(DSEMM-VA) is probably attributable to their more expanded polymer chain in aqueous solution, which will be more accessible to the degrading enzymes. The minimum chain length of the PVA-block, which acts as a biodegradable segment in the polymer chain, is estimated to be 2–3 and 3–4 monomer units for P(DSMM-VA) and P(DSEMM-VA), respectively. On the other hand, the minimum PVA block is about 5 and 7 monomer units for the fumarate and maleate copolymers, respectively. It was confirmed that P(DSMM-VA) showed excellent builder performance compared to the corresponding fumarate copolymer.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.  相似文献   

11.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   

12.
The influence of the blending ratio of biodegradable starch/polyvinyl alcohol (PVA)/glycerol in encapsulating urea has been investigated. It is found that water absorption capacity increased approximately 135 % as the amounts of starch, PVA and glycerol in the composite film increase. Therefore, the swell ability of the composite film is increased and the urea is released from the composite film in the wet environment. The FTIR shows that the urea had been encapsulated successfully in the composite films. Moreover, the soil burial biodegradation results indicated that the biodegradability of the starch/PVA/glycerol/urea composite film strongly depended on the PVA proportion in the composite film matrix. The DSC results show that the higher the amount of PVA in the composite film, the less change of the melting enthalpy value. The crystalline region of PVA remains after biodegradation.  相似文献   

13.
In this study, we have showed a facile route for fabrication of a novel microporous material based on chitosan (CS) and poly(vinyl alcohol) (PVA) biodegradable nanofibers that have high specific surface area, considerable porosity, and small diameter. Scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area analysis, and CHNS/O elemental analyser were applied to characterize the fabricated CS/PVA composite nanofibers. Moreover, the influences of spinning conditions including concentration, voltage, electrospinning distance, and flow rate, on size distribution and pore diameter of the final product were systematically studied using 2k?1 factorial design experiments, and the response surface optimization was used for determining the best synthesis parameter. The results obtained from 2K?1 factorial design experiments showed that electrospinning parameters influenced the size distribution and pore diameter of the CS/PVA microporous material. Based on the response surface methodology, the CS/PVA product could be obtained with a high microporous diameter of 1.8 nm and a small diameter distribution of 15.0 nm under optimized conditions. The obtained results showed that the fabricated samples could be utilized in different applications.  相似文献   

14.
There is a wide range of applications where calcium phosphate and hydroxyapatite (HA) are used as biomaterials, e.g. as synthetic bone grafts, coating on metal prostheses (like hip endoprostheses or dental implants) and drug carriers. In the study, the design and synthesis of composites based on poly(vinyl alcohol-co-lactic acid)/hydroxyapatite (PVA-co-LA/HA) with potential for biomedical applications, they are presented. The hydroxyapatite particles were surface-grafted with l(+)-lactic acid in the presence of manganese acetate as catalyst, resulting in modified hydroxyapatite (HAm) with improved capacity of bonding, respectively for the preparation of the composite based on PVA-co-LA/HAm. FT-IR spectra further confirmed the existence of PLA polymer on the surface of HA particles. In synthesis of PVA-co-LA copolymer the different molar ratios PVA/LA (2/1, 1/1, 1/2), toluene/water: 1/2 (as azeotrope solvent mixture) and manganese acetate as catalyst, were used. The composite materials were synthesized in situ with 10 wt% HA, and respectively HAm (reported to PVA and lactic acid components). The composite materials were characterized by FTIR spectroscopy, thermal analyses (DSC, DTG), 1H-NMR spectroscopy, particle size distribution and zeta potential.  相似文献   

15.
Polyuronic acids, i.e., amylouronic acid, cellouronic acid and chitouronic acid, were prepared from starch, cellulose and chitin, respectively, by the 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation, and their gas-barrier properties and biodegradability were studied in consideration to use the polyuronic acids as flexible packaging films or coating materials. Cellouronic acid and amylouronic acid had excellent oxygen-barrier properties similar to that of poly(vinyl alcohol) (PVA), while chitouronic acid did not. The regular chemical structures of the former two polyuronic acids with no bulky substituents or adducts may have brought about such high oxygen-barrier levels. An oxidized product prepared form fine microcrystalline cellulose by the TEMPO-mediated oxidation was not completely dissolved in water, but became a paste. However, this paste also formed sufficiently smooth films by coating, and had good gas-barrier property. All polyuronic acids prepared were biodegradable; cellouronic acid and chitouronic acid had high degrees of biodegradability, while amylouronic acid had quite low value. These various characteristics are significant for end use of these new polyuronic acids as gas-barrier materials for biodegradable packaging.  相似文献   

16.
This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as the interaction with water, were measured. The compatibility of the film-forming components and the uniformity of the films were determined by zeta potential and SEM, respectively. The glycerol and mucilage allowed obtaining more hydrophilic films. The barrier properties of the films made from 100 % chitosan were similar to composed films containing PVA up to 40 %. The results of this study suggest that the interaction between chitosan and mucilage could increase water vapor permeability. The films prepared from either 100 % chitosan or PVA showed a more hydrophobic behavior as compared to the composed films. The films were homogenous since no boundary or separation of components was observed, indicating a good compatibility of the components in the films.  相似文献   

17.
Chitosan fibers were prepared by wet spinning in three stages. Initially, a polymer solution of chitosan and polyvinyl alcohol (PVA) was solidified in a mixture of potassium hydroxide and ethanol. The polymers were then crosslinked with sodium tripolyphosphate (TPP) or glutaraldehyde, and finally dried in methanol or acetone. The effect of these conditions was evaluated based on scanning electron microscopy images, water-holding capacity, and swelling and mechanical properties. The miscibility of the mixture was evaluated using Fourier Transform Infrared spectroscopy and differential scanning calorimetry. The results obtained showed that chitosan fibers containing 45% (v/v) PVA and crosslinked using TPP have properties similar to those of commercial sutures prepared using other biomaterials.  相似文献   

18.
Journal of Polymers and the Environment - The objective of this work was to prepare a maleate epoxidized natural rubber (MENR) and poly(vinyl alcohol) (PVA) (MENR/PVA) blend in the presence of...  相似文献   

19.
Coaxial electrospinning technique was used to fabricate the core–sheath composite nanofibers of ZnO nanoparticle (Nps) (10%, 20% w/w) doped polymethyl methacrylate (PMMA) (as sheath) and polyvinyl alcohol (PVA) (as core). Fourier transform infrared (FT-IR) spectra were confirmed the weak forces arise between ZnO Nps, PMMA and PVA matrixes. The hexagonal (wurtzite) structure of ZnO Nps with ~?30.8 nm of diameter was confirmed from the X-ray diffraction pattern. The morphology and microstructure of core–sheath composite nanofibers were confirmed from the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is clearly seen from the TEM images that the PMMA encapsulate the PVA core. Core–sheath composite nanofibers were assessed against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria through quantitative, disk diffusion and viable cell count methods. It was found that ZnO Nps doped core–sheath nanofibers were effectively inhibit the growth of gram positive bacteria, B. subtilis.  相似文献   

20.
The effect of crosslinkers on the biodegradation behavior of starch/polyvinyl alcohol (PVA) blend films was investigated by weight loss study, Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Starch/PVA films were prepared by solution casting method and 5 weight% of four different crosslinking agents like epichlorohydrin, formaldehyde, zinc oxide and borax were used in four different sets to crosslink the films. These crosslinked starch/PVA films were biodegraded in compost. Weight loss study showed that crosslinking retarded the biodegradation of the films in the first 15?days, but after that, there was a significant increase in weight loss. The DSC analysis revealed that the consumption of starch and consequent rearrangement of the PVA molecules were distinctly different in the crosslinked films due to the effect of different crosslinking agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号