首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
大连市人群对多环芳烃的暴露及健康风险评价   总被引:2,自引:0,他引:2  
近年来大连市多环芳烃污染日益严重.为研究大连市多环芳烃类有机污染物对居民产生的潜在健康危害,结合大连地区人群状况,采用多介质-多途径暴露模型,评价大连市居民暴露于多环芳烃的暴露量及由此导致的健康风险,分析不同环境介质、暴露介质及暴露途径的风险贡献率,并结合蒙特卡罗方法分析研究过程中的不确定性.在实际评价时,根据大连市的实际情况,选用了部分美国环保局推荐的参数,剩余的评价参数根据国内的相关文献进行了修正.结果表明,大连市居民中男性和女性对环境中多环芳烃的日平均暴露量分别为2.59× 10-4 mg/(kg·d)和2.79×10-4 mg/(kg·d).主要暴露途径是膳食暴露,此外呼吸暴露也占有一定的比重,皮肤暴露作用很小.膳食暴露中对总暴露贡献最大的食品是谷物和蔬菜.相应的男性和女性的健康风险度分别为2.68×10-5a-1和2.90×10-5 a-1,大连市多环芳烃类污染物居民人体健康风险度高于可接受健康风险度标准.大连市女性对多环芳烃的暴露量高于男性,女性健康风险平均值亦高于EPA标准值.大连市多环芳烃人群暴露与天津、北京和兰州相比存在一定的差异.各项参数中,粮食、蔬菜摄食量和相应的多环芳烃(PAHs)残留浓度是影响暴露的重要因素.通过蒙特卡罗模拟得到各年龄段人群对多环芳烃(PAHS)的日均暴露量的分布特征,各输出变量均服从对数正态分布.  相似文献   

2.
为调查百色市大气颗粒物PM2.5中16种多环芳烃(PAHs)的污染特征,于2013年冬、夏两季采集了百色市城、郊2个不同采样点的大气样品,采用HPLC分析了16种US EPA优控PAHs的质量浓度、组分特征,运用同分异构体比率法揭示其污染来源.结果表明:百色市大气PM25中∑PAHs质量浓度为4.7~ 142.3 ng/m3,低于我国制定的PM2.5中PAHs的年均值(35 μg/m3);百色市城区、郊区2个采样点大气PM2.5中PAHs的质量浓度分别为6.9~ 142.3 ng/m3和4.7~ 109.6ng/m3,平均值为37.2 ng/m3和24.7 ng/m3,不同环数PAHs质量浓度从大到小为4环、5环、3环、6环、2环,4环、5环PAHs分别占∑PAHs的42.9%~ 50.7%和18.4%~22.4%;主要的单种PAHs为茚并[1,2,3-cd]芘、苯并[g,h,i]苝、(苊)、苯并[b]荧蒽和苯并[k]荧蒽.冬季∑PAHs质量浓度高于夏季.PM2.5中苯并[a]芘等效毒性(BEQ)为2.3~7.4,与其他城市相比,BEQ属于中下等水平.PM2.5中的PAHs源自煤及机动车辆燃油的燃烧.  相似文献   

3.
西安市冬季大气颗粒物中多环芳烃的分布特征   总被引:2,自引:0,他引:2  
对西安市不同功能区大气颗粒物中13种优控多环芳烃(PAHs)的研究表明,西安市冬季大气颗粒物中PAHs污染严重,各采样点13种PAHs总浓度(∑PAHs)为121.61~302.25 ng/m3,平均浓度为188.44 ng/m3,其中强致癌的苯并[a]芘(BaP)平均浓度为12.63 ng/m3;不同功能区大气颗粒物中PAHs和BaP的浓度分布存在明显差异,∑PAHs浓度依次为:交通繁忙区>学生公寓(燃煤排放明显)>农业开发区>高新产业开发区>商业区>校园,BaP浓度:交通稠密区>农业开发区>环工学院(学校教师的停车场)>商业区>学生公寓>高新产业开发区;不同功能区大气颗粒物中,中高环PAHs含量占优势,不同环数PAHs占总量的比例顺序为4环(38.64%)>5环(25.17%)>6环(18.83%)>3环(10.25%).  相似文献   

4.
采用液相色谱法对三峡库区重庆段9个断面沉积物样品的多环芳烃(PAHs)进行了分析。结果表明,三峡库区重庆段沉积物中ΣPAHs质量比范围为68.6~4 226 ng/g,平均质量比为685 ng/g;7种致癌单体Σ7PAHs质量比范围为23.7~1 265 ng/g,平均值为261ng/g,属中等污染水平。沉积物中ΣPAHs质量比最高点位于化工园区下游,其余断面质量比较低且变化较小;化工园区下游以2~3环为主,占总量的50.66%,其余断面以5~6环为主,占总量的25.90%~67.01%。沉积物中PAHs来源主要为木柴、煤燃料的高温燃烧。沉积物质量基准法和质量标准法评价结果表明,化工园区下游沉积物存在生态风险,有必要开展PAHs污染来源调查和底质生态修复研究;其余断面存在潜在生态风险,需加强监测。  相似文献   

5.
2010年9月在河北曹妃甸近海采集表层沉积物样品,用气相色谱质谱仪(GC/MS)测定分析16种US EPA(美国国家环境保护署)优先控制的多环芳烃(PAHs).结果表明,曹妃甸近海9个站位沉积物中的PAHs质量比为267.2~ 858.2 ng/g,平均值为376.5 ng/g,其高值区位于原油码头东部.与国内外其他区域沉积物中的PAHs质量比进行对比发现,曹妃甸近海沉积物中PAHs的质量比总体处于中等水平.本次调查检出的PAHs种类较多,主要同系物为菲(Phe)、芴(Fl)和荧蒽(Flu).与国内研究的渤海湾近岸表层沉积物PAHs质量比进行对比发现,曹妃甸近海表层沉积物中萘、芴、菲、蒽、荧蒽、芘等组分质量比要高出很多,这与曹妃甸石油化工与机械制造等发展迅速密切相关.异构体比值法分析表明,该区表层沉积物中PAHs主要来源于生物质、煤及燃料燃烧.根据效应区间值进行生态风险评价,结果表明,曹妃甸沉积物对周围生物的影响较小.与国内一些典型区域的生态风险研究进行对比分析发现,各研究区域均存在芴超过影响范围低值(Effects Range Low,ERL)的站位.潜在影响等级(Probable Effects Level,PEL)分析表明,同系物中的芴也存在超过相应标准值的站位,应引起海洋环保部门的重视.  相似文献   

6.
张红丽  刘娴 《环境与发展》2020,(4):180-180,182
本文以新疆某石化企业周边土壤作为调查对象,分析其中16种多环芳烃的含量,分析结果表明,该石化企业周边土壤中多环芳烃的含量处于安全水平。  相似文献   

7.
多环芳烃光降解研究进展   总被引:6,自引:0,他引:6  
概述了多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)在液相、固相和气相介质中的光降解过程及应用定量结构-性质关系(Quantitative Structure-Property Relationships,QSPR)模型预测PAHs光降解的研究进展.在此基础上,对今后一段时期PAHs光降解研究提出几点看法.  相似文献   

8.
采用GC-MS联用技术分析了长江口及毗邻海域的表层沉积物样品中16种多环芳烃(Polycyclic Aromatic Hydrocarbon, PAHs)的质量比,对其组分、分布、来源及生态风险水平进行了探讨.结果表明,长江口及其毗邻海域PAHs的质量比为229.6~1 242 ng·g-1(平均值为919.2 ng·g-1),检出的16种PAHs均以4~6环为主,占PAHs总量的62.07%~89.28%; 采用2~4环低相对分子质量与5~6环高相对分子质量的比值(Mr(LMW)/Mr(HMW)),荧蒽与芘的比值(Mr(FLUA)/Mr(PYR))分析PAHs的来源情况,结果显示研究区域中PAHs主要来源于石油源; 采用国外沉积物质量评价方法的生物影响效应低值(Effects Range Low, ERL)和生物影响效应中值(Effects Range Median, ERM)对PAHs污染水平进行评价,研究区域PAHs的污染水平相对较低,对底栖生物产生危害风险的可能性较小.  相似文献   

9.
通过超声波萃取和高效液相色谱方法,对炼焦过程粉尘中富含的多环芳烃(PAHs)进行了分析。数据显示,炼焦一车间环境粉尘中PAHs的质量浓度最高,达12.00μg/m3。从粉尘中PAHs单组分的分布特征来看,5个点位粉尘样品中共检出14种PAHs;通过对不同粒径的粉尘中多环芳烃的分布特征分析发现,粉尘中PAHs主要集中在10μm以下的粉尘中即PM10中,均超过了75%;环境粉尘中苯并[a]芘的浓度超过了国家规定的污染物排放标准,会对职工的健康产生较大影响。  相似文献   

10.
采用室内模拟实验的方法,综合分析了煤矸石堆积自燃过程中多环芳烃(PAHs)含量的变化规律。研究发现,煤矸石自燃过程中,PAHs的生成与散失同时存在。较低的温度(60℃)对多环芳烃的生成具有一定的促进作用;500℃之后,PAHs全部散失或者降解为小分子物质,含量几乎为0。单个PAH的含量变化与总含量基本一致,仅是某一个PAH在不同温度下在总含量中所占的比例不同。自燃过程中高环的PAHs可能生成低环的PAHs使其含量增加。  相似文献   

11.
大连市水资源安全评价模型的构建及其应用   总被引:5,自引:0,他引:5  
水资源安全问题是水科学与系统科学交叉研究的热点.以大连市为例构建评价指标体系,通过层次分析法(AHP)与熵值法确定评价指标在满足主客观条件下的综合权重; 采用率定方程确定各指标的安全度;应用指数合成法对大连市水资源的安全状况进行评价.研究结果表明,近几年大连市水资源总体上处于不安全状态且不安全状况主要发生在农村.为保证社会、经济、环境各方面协调发展,必须重点解决农村地区的用水问题.本文同时也就解决水资源安全问题提出了一些建议.  相似文献   

12.
欧盟城市饮用水供应链风险管理与评价及其借鉴   总被引:1,自引:0,他引:1  
结合欧盟2006年起开展的TECHNEAU(Technology Enabled Universal Access to Safe Water)项目,介绍了欧盟城市"从水源到用户的饮用水供应链"风险管理机制,以及"风险识别、评估、减缓和控制"综合风险评价框架;并从水源地、水处理系统、配水系统、历史风险事件、风险评价方法、评价结果6方面比较了捷克、德国、荷兰、挪威、瑞典5个国家典型城市风险评价实践,着重分析了瑞典哥特堡市风险评价中采用的综合概率故障树法和客户损失时间指数方法及其应用价值。总结了欧盟饮用水供应链的风险管理在全过程管理策略、"关口前移"管理方针、多样性的风险评价方法与技术、参与主体多元化、评价结果公开透明5个方面的成功做法和经验,可供国内参考。  相似文献   

13.
为研究和龙水库水质状况及对人体健康产生的危害风险,采用单因子评价法和有机污染综合指数法对和龙水库20个采样点为期1a的水质监测数据进行了评价;并采用美国环境保护局(USEPA)推荐的健康风险评价模型,对水库主体水域水体进行人体饮用健康风险评价.结果表明,和龙水库主体水域水质采样年度整体为Ⅳ类水,且春季水质为开始污染水平,其余各季节水质为一般水平.水库水体中化学物质As所产生的致癌风险为1.59× 10-5~3.37× 10-5a-1,远高于人体最大可接受风险(1×10-6a-1).而由Cu、Zn、Mn和NH4+-N所引起的非致癌风险(10-10~ 10-11 a-1)均低于最大可接受风险(1×10-6a-1).和龙水库周边养猪场的污水排放可能是其主要污染源,养猪场附近河段的水体全年为劣Ⅴ类,属于严重污染水平;主要超标污染指标为BOD5、NH4+-N、总磷、COD,各指标值分别是水库主体水域水体的268.49、253.15、55.81、40.38倍;猪场废水中As是导致水库主体水域As人体健康风险超标的主要原因.因此,需要加强对和龙水库周边养猪场的排污治理,以保障水库水体质量.  相似文献   

14.
煤矿区水环境中多环芳烃污染物的组成与分布   总被引:1,自引:0,他引:1  
采集23个石龙区地表水样和地下水样,用色谱-质谱技术鉴定不同水体中二-七环芳烃化合物,检出了14种优控多环芳烃(Polycyclic Aromatic Hydrocarbons,简称PAHs),即萘、菲、蒽、芴、芘、苯并[a]蒽、(卄屈)荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a,h]蒽、茚并[1,2,3-c,d]芘、苯并[g,h,i].结果表明,所检测的地表水样中多环芳烃含量为0.068~8.377 μg/L,地下水样中优控多环芳烃含量为0.043~0.47 μg/L;三、四环芳烃化合物含量普遍较高,且三环芳烃中菲含量最高,四环芳烃中荧蒽和芘含量普遍较高.应用甲基菲指数(MPI1)、甲基菲与菲比值(MP/P)、荧蒽与芘比值(FL/PY)和"三芴"系列的组成特征等标志物参数进行分析,得出煤及其不完全燃烧对水环境中多环芳烃的贡献较大.  相似文献   

15.
以静电纺丝法自制的尼龙6纳米纤维膜为吸附材料,建立了快速测定水体痕量多环芳烃(PAHs)的固相表面荧光光谱法(SSF)。将直径为5 cm的尼龙6纳米纤维膜作为滤膜用于抽滤菲、芘、荧蒽的水溶液,将膜自然晾干后置于可变角粉末样品池上,利用荧光分光光度计测量膜表面PAHs的三维固相表面荧光光谱特征,确定最佳激发发射波长,考察荧光强度随溶液初始质量浓度的线性变化关系。结果表明,菲、芘、荧蒽的最大激发发射荧光中心分别位于Ex/Em=255nm/368 nm、Ex/Em=340 nm/376 nm和Ex/Em=290 nm/437 nm处。当抽滤水样体积为500 m L时,菲、芘、荧蒽荧光强度与初始质量浓度之间的标准曲线分别为y=9432.4x+261.1,线性范围为5~500ng/m L;y=753480x+805.51,线性范围为0.2~10 ng/m L;y=9946.06x+603.48,线性范围为10~400 ng/m L,检出限分别为0.973 ng/m L、0.016 2 ng/m L和0.089 6 ng/m L。当质量浓度分别为100 ng/m L、10ng/m L和50 ng/m L时,7次测量的相对标准偏差(RSD)分别为7.1%、2.6%和5.1%,平均值相对误差分别为1%、2%和-0.2%。自来水低中高3个质量浓度的平均加标回收率分别为87.2%~98.2%、101%~120%、85.8%~92.3%。本方法具有简便、经济、灵敏度高等优点,适合于水体痕量PAHs的快速测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号