首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO3-extractable metals), changes in metal bio/availability (0.1 M NaNO3-extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMET biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO3-extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system.  相似文献   

2.
In this study isotopic dilution methods were used to investigate the hypothesis that access to metals associated with specific chemical components in the soil that are not available to non-accumulator species could be involved in hyperaccumulation. The hyperaccumulator Thlaspi caerulescens and a non-accumulator species, Brassica napus, were grown in Cd and Zn enriched soil components calcite, goethite, charcoal and cryptomelane. The metal enriched components were aged to allow transformation of a proportion of added metals to non-labile forms. Results from the isotopic dilution L value method showed that despite taking up more metals, T. caerulescens accessed the same pool of metals as B. napus. Hence differential access to different solid-phase pools of metals appears to be an unlikely mechanism underlying metal hyperaccumulation. For all components except charcoal, L values for Cd and Zn were greater than the corresponding E values suggesting that E values may tend to underestimate the bioavailable fraction of metals in soils.  相似文献   

3.
Some higher plant species have developed heavy metal tolerance strategies which enable them to survive and reproduce in highly metal-contaminated soils. We have investigated such heavy metal uptake and accumulation strategies of two absolute metallophyte species (Armeria maritima ssp. halleri and Cardaminopsis halleri) and one pseudometallophyte (Agrostis tenuis) growing near a former metal smelter. Samples of plant parts and soil were analysed for Zn, Cd, Pb, and Cu. In soil, there were two dominant types of metal concentration gradients with depth. Under the absolute metallophytes, extremely high metal contents were measured in the surficial Ah horizon, followed by a strong decrease in the underlying soil horizons (L(11) and L(12)). Under the pseudometallophyte, metal concentrations in the Ah horizon were much lower and fewer differences were observed in metal concentrations among the Ah, L(11), and L(12) horizons. The concentrations of Zn, Cd, Pb, and Cu in Agrostis tenuis roots were greater than concentrations in leaves, indicating significant metal immobilisation by the roots. For C. halleri, Zn and Cd concentrations in leaves were >20,000 and >100 mg kg(-1), respectively, indicating hyperaccumulation of these elements. Armeria maritima ssp. halleri exhibited root concentrations of Pb and Cu that were 20 and 88 times greater, respectively, than those in green leaves, suggesting an exclusion strategy by metal immobilisation in roots. However, Zn, Cd, Pb, and Cu concentrations in brown leaves of Armeria maritima ssp. halleri were 3-8 times greater than in green leaves, suggesting a second strategy, i.e. detoxification mechanism by leaf fall.  相似文献   

4.
Most studies dealing with phytoremediation have considered metal extraction efficiency in relation to metal concentration of bulk soil samples or metal concentration of the soil solution. However, little is known about the effect of various metal-bearing solids on plant growth and metal extraction of hyperaccumulators. In this study, we investigated the ability of Arabidopsis halleri to grow and extract metals from different substrates consisting in an unpolluted soil amended with various metal-bearing solids collected in soils around a Zn smelter complex. The metal-bearing solids used as amendments were: fresh and decomposing organic residues in the soil, a soil clay fraction and two waste slags. Pure mono-metallic salt (ZnSO4) was also used. Two series of substrates were produced, one moderately polluted, and the other highly polluted. An additional substrate was formed by the unamended soil, and used as an unpolluted control. Zn, Cd, Cu, and Pb were measured in the substrates, and in the roots and shoots of A. halleri. The dry matter yield of A. halleri was shown not to depend on the nature of the metal-bearing solid used, except when Cu-toxicity was suspected. On highly-polluted substrates, Zn extraction by A. halleri depended on the nature of metal-bearing solids used, showing the following trend: pure mono-metallic salt > waste slags and soil clay fraction > fresh and decomposing organic matter. We explained these differences by the high solubility of Zn in the mono-metallic salt, whereas in the mineral metal-bearing solids and in both fresh and decomposing organic matter, Zn release required mineral weathering or organic matter mineralization, respectively. This work clearly showed that phytoremediation studies have to consider the nature of metal-bearing solids in contaminated soils to better predict the efficiency of plant extraction.  相似文献   

5.
The influence of soil characteristics on the phytoremediation potential of Thlaspi caerulescens is not well understood. We investigated the effect of soil pH and Cd concentration on plant Cd uptake on one soil type, and the variation in Cd uptake using a range of field contaminated soils. On soils with total Cd concentrations of 0.6-3.7 mg kg(-1), T. caerulescens (the Ganges ecotype) produced greater biomass in the pH range 5.1-7.6 than at pH 4.4. The highest plant Cd concentration (236 mg kg(-1)) and Cd uptake (228 microg pot(-1)) were observed at pH 5.1. On soils with total Cd concentrations of 2.6-314.8 mg kg(-1), shoot Cd concentrations were 10.9-1,196 mg kg(-1). Multiple regression analysis indicated that higher Cd in soil, low pH (within the range of >5) and coarser texture were associated with higher Cd concentration and Cd uptake by T. caerulescens.  相似文献   

6.
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.  相似文献   

7.
The objectives of this study were to assess the potential for using Thlaspi caerulescens as a phytoextraction plant and develop a user-advice model, which can predict the frequency of phytoextraction operation required under prescribed conditions. Pot and field trials were conducted using soil collected from a dedicated sewage sludge disposal facility. Soil amendments (sulphuric acid, potassium chloride and EDTA) intended to increase Cd solubility were also tested. Predictive models of Cd and Zn uptake were developed which were able to reproduce the observed pH-dependence of Cd uptake with an apparent maximum around pH 6. Chemical treatments did not significantly increase the uptake of Cd. The periodic use of phytoextraction with T. caerulescens to maintain soils below statutory metal concentration limits, when modern sewage sludges are repeatedly applied, seems very attractive given the non-intrusive and cost-effective nature of the process. The major limitations lie with the large-scale husbandry of T. caerulescens.  相似文献   

8.
Metals are associated to various constituents in polluted soils, and their availability is closely related to their chemical speciation. Studies on relations between metal extraction efficiency by hyperaccumulators and location of metals with respect to soil constituents are scarce. In this study. we investigate the relationship between metal extraction by Arabidopsis halleri and the exchangeable metals from substrates amended with various metal-bearing solids collected in the vicinity of a Zn smelter complex. These consisted of fresh and decomposing organic matter, the soil clay fraction, and two types of waste slags. ZnSO4 was also used as metal-bearing solid. Each was mixed with an unpolluted soil to produce two types of substrate, one moderately polluted and the other highly polluted. Total Zinc, Cd, Cu, and Pb were measured in substrates and in roots and shoots of A. halleri. Analysis of 0.01 M CaCl2 exchangeable metals in each substrate was performed before and after plant growth. The results showed different concentrations of exchangeable metals after plant growth, depending on the nature of the metal-bearing solids. In the ZnSO4 soil substrate, the proportion of exchangeable Zn decreased after plant growth, whilst it increased significantly on substrates amended with the two waste slags. For the other substrates, exchangeable Zn was not significantly different before and after plant growth. The same trend was observed for Cd. In the case of Cu, exchangeable rates increased in all substrates. The results were discussed according to the characteristics of the metal-bearing solids and to the metal-uptake strategy of A. halleri.  相似文献   

9.
In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 molL(-1) CaCl(2)). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time.  相似文献   

10.
The efficiency of poplar (Populus nigra L.xPopulus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH4Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils.  相似文献   

11.
Metal-contaminated soils in the vicinity of industrial sites become of ever-increasing concern. Diagnostic criteria and ecological technologies for soil remediation should be calibrated for various soil conditions; actually, our knowledge of calcareous soil is poor. Silty soils near smelters at Evin (Pas de Calais, France) have been contaminated by non-ferrous metal fallout and regularly limed using foams. Therefore, the mobility, bioavailability, and potential phytotoxicity of Cd, Pb and Zn, were investigated using single soil extractions (i.e. water, 0.1 n Ca(NO(3))(2), and EDTA pH 7), and vegetation experiments, in parallel with a biological test based on (iso)-enzymes in leaves and roots, before and following soil treatment with chemical agents, i.e. Thomas basic slags (TBS), hydrous manganese oxide (HMO), steel shots (ST) and beringite. No visible toxicity symptoms developed on the above-ground parts of ryegrass, tobacco and bean plants grown in potted soil under controlled environmental conditions. Cd, Zn and Pb uptake resulted in high concentrations in the above-ground plant parts, but the enzyme capacities in leaves and roots, and the peroxidase pattern indicated that these metal concentrations were not phytotoxic for beans as test plants. The addition of chemical agents to the soil did not increase biomass production, but treatment with either HMO, ST or beringite markedly decreased the mobility of Cd, Zn and Pb. These agents were proven to be effective in mitigating the Cd uptake by plants. HMO and ST decreased either Pb or Zn uptake by ryegrass. TBS was effective in lowering Pb uptake by the same species. Beringite decreased Cd uptake by beans. If fallout could be restricted, the metal content of food crops in this area should be lowered by soil treatment. However, the differences in Cd uptake between plant species were not suppressed, regardless of the type of agents applied to the soil.  相似文献   

12.
The documeneed adverse health effects of soil Cd and Pb have led to public concern over soil contamination with metals. A 4-year field experiment was conducted to study the transfer of Cd, Pb, and Zn from soil contaminated by smelter flue-dust to crop plants grown in a rotation. The soil was amended with Pb?Zn smelter flue-dust (2-66.8 kg per 10 m(2) plot) to simulate the long-term effect that the smelting of non-ferrous metal ore has on arable soils. The treated soil became strongly contaminated with metals (Cd 3.2-106 mg/kg, Pb 146-3452 mg/kg, Zn 465-11 375 mg/kg). Concentrations of Cd, Pb, and Zn in barley grain, barley straw meadow bluegrass, red clover, and potatoes were generally low. The highest metal concentrations were found in potato tubers (intact), meadow bluegrass, and barley straw. The observed reduction in crop yield was probably the result of possible nutrient imbalances rather than of metal (Zn, Cu) phytotoxicities. Zn and Cd uptake by the plants can be described by the saturation (plateau) model (y = ax(b), b < 1). The relationship between Pb in the soil and plants was linear with an extremely low slope (0.0001-0.0003). No excessive dietary intake of Cd is expected when Cd concentrations in barley grain and potato tubers grown on the contaminated soil are not higher than 0.6 and 1.0 mg/kg, respectively. Based on the risk analysis and taking into account the saturation model of the soil-plant metal relationship, it was concluded that, under the conditions of this experiment (neutral soil pH), soil with Cd concentrations of up to 30 mg/kg is still safe for production of these crop plants.  相似文献   

13.
Nicotiana glauca transformed with TaPCS1 was tested for its application in phytoremediation. When plantlets were grown in mine soils containing Cu, Zn, and Pb (42, 2600, and 1500 mg kg(-1)) the plant showed high levels of accumulation especially of Zn and Pb. Adult plants growing in mine soils containing different heavy metal concentrations showed a greater accumulation as well as an extension to a wider range of elements, including Cd, Ni and B. The overexpressed gene confers up to 9 and 36 times more Cd and Pb accumulation in the shoots under hydroponic conditions, and a 3- and 6-fold increase in mining soils. When the hyperaccumulator Thlaspi caerulescens was compared, the results were higher values of heavy metal and Boron accumulation, with a yield of 100 times more biomass. Thlaspi was unable to survive in mining soils containing either a level higher than 11000 mg kg(-1) of Pb and 4500 mg kg(-1) of Zn, while engineered plants yielded an average of 0.5 kg per plant.  相似文献   

14.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

15.
Site-specific hydrological conditions affect the availability of trace metals for vegetation. In a greenhouse experiment, the effect of submersion on the metal uptake by the wetland plant species Salix cinerea and Populus nigra grown on a contaminated dredged sediment-derived soil and on an uncontaminated soil was evaluated. An upland hydrological regime for the polluted sediment caused elevated Cd concentrations in leaves and cuttings for both species. Emergence and soil oxidation after initial submersion of a polluted sediment resulted in comparable foliar Cd and Zn concentrations for S. cinerea as for the constant upland treatment. The foliar Cd and Zn concentrations were clearly higher than for submerged soils after initial upland conditions. These results point at the importance of submergence-emergence sequence for plant metal availability. The addition of foliar-based organic matter or aluminosilicates to the polluted sediment-derived soil in upland conditions did not decrease Cd and Zn uptake by S. cinerea.  相似文献   

16.
The aim of this study was to determine important metal pools for bioaccumulation by the earthworms Lumbricus rubellus and Aporrectodea caliginosa in soils with high binding capacity. Cd, Cu and Zn concentrations in soil, pore water and CaCl(2) extracts of soil, in leaves of the plant species Urtica dioica and in earthworms were determined at 15 field sites constituting a gradient in metal pollution. Variations in the Cu and Cd concentrations in L. rubellus and Cu concentrations in A. caliginosa were best explained by total soil concentrations, while variation in Cd concentration in A. caliginosa was best explained by pore water concentrations. Zn concentrations in L. rubellus and A. caliginosa were not significantly correlated to any determined variable. It is concluded that despite low availability, earthworms in floodplain soils contain elevated concentrations of Cu and Cd, suggesting that uptake takes place not only from the soluble metal concentrations.  相似文献   

17.

Background, aim, and scope  

Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant.  相似文献   

18.
In order to better understand the fate of metals during the biodegradation of organic matter in soils, an in vitro incubation experiment was conducted with metal-rich and metal-free leaves of Arabidopsis halleri introduced in a non-contaminated soil. During incubation of these microcosms, we followed the partitioning of Zn and Cd between the solution and their solid components, by determining the metal contents of six soil fractions and dissolved metals after granulo-densimetric separations at selected times. Microbial biomass and exchangeable metals in K(2)SO(4) solutions were also determined at the same times, and two main stages were identified. The first one takes place after a fast abiotic transfer of Zn and Cd from readily soluble plant tissues onto fine soil constituents, keeping metals away from the liquid phase: during about 14 days, microbial biomass increased as well as metal contents of some soil fractions, particularly those rich in particulate organic matter. During the second stage, between 14 and 60 days and for the metal-rich microcosms, Zn and Cd contents in solution increased, while microbial biomass decreased instead of staying constant as in control. A change of Zn and Cd speciation is assumed, from non-toxic adsorbed forms to more toxic species in solution. Remaining metal-rich plant residues seem to create a stable organic C compartment in the soil.  相似文献   

19.
Liu MQ  Yanai J  Jiang RF  Zhang F  McGrath SP  Zhao FJ 《Chemosphere》2008,71(7):1276-1283
The southern French (Ganges) ecotype of Thlaspi caerulescens J & C Presl is able to hyperaccumulate several thousand mg Cd kg(-1) shoot dry weight without suffering from phytotoxicity. We investigated the effect of Cd on growth and the activity of carbonic anhydrase (CA), a typical Zn-requiring enzyme, of T. caerulescens in soil and hydroponic experiments. In one of the hydroponic experiments, T. caerulescens was compared to the non-accumulator Thlaspi ferganense N. Busch. In the soil experiment, additions of Cd at 5-500 mg kg(-1) soil increased the growth of T. caerulescens significantly. In the hydroponic experiments, exposure to Cd at 1-50 microM for three weeks had no significant effect on the growth of T. caerulescens, but decreased the growth of T. ferganense markedly even at the lowest concentration of Cd (1muM). Cadmium exposure significantly increased the CA activity in T. caerulescens, but decreased it in T. ferganense. The CA activity in T. caerulescens correlated positively with the Cd concentration in the shoots up to 6000 mg kg(-1), even though shoot Zn concentration was decreased by the Cd treatments. For comparison, Cd treatments had no consistent effect on the activity of superoxide dismutase in T. caerulescens. The results suggest that Cd may play a physiological role in the Cd-hyperaccumulating ecotype of T. caerulescens by enhancing the activities of some enzymes such as CA. Further research is needed to establish whether a Cd-requiring CA exists in T. caerulescens.  相似文献   

20.
Potentially hazardous trace elements such as Cd, Cu, Cr, Ni and Zn are expected to accumulate in biosolids–amended soil and remain in the soil for a long period of time. In this research, uptake of metals by food plants including cabbage, carrot, lettuce and tomato grown on soils 10 years after biosolids application was studied. All the five metals were significantly accumulated in the biosolids-amended soils. The accumulation of metal in soil did not result in significant increase in concentrations of Cu, Cr and Ni in the edible plant tissues. However, the Cd and Zn concentrations of the edible tissues of plants harvested from the biosolids receiving soils were significantly enhanced in comparison with those of the unaffected soils. The plant uptake under Greenfield sandy loam soil was generally higher than those under the Domino clayey loam soil. The metal concentration of edible plant tissue exhibited increasing trends with respect to the concentrations of the ambulated metals. The extents of the increases were plant species dependent. The indigenous soil metals were absorbed by the plants in much higher rates than those of the biosolids–receiving soils. It appeared that the plant uptake of the indigenous soil-borne metal and the added biosolids-borne metals are independent of one another and mathematically are additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号