首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Anaerobic digestion of cattail by rumen cultures   总被引:4,自引:0,他引:4  
The anaerobic digestion of aquatic plants could serve the dual roles for producing renewable energy and reducing waste. In this study, the anaerobic digestion of cattail (Typha latifolia linn), a lignocellulosic aquatic plant, by rumen microorganisms in batch cultures was investigated. At a substrate level of 12.4 g/l volatile solids (VS) and pH 6.7, maximum VS conversion of 66% was achieved within an incubation time of 125 h. However, a decrease in pH from 6.7 to 5.8 resulted in a marked reduction in VS conversion. The total volatile fatty acids (VFAs) yield was about 0.56 g/g VS digested. Acetate and propionate were the major aqueous fermentation products, while butyrate, i-butyrate and valerate were also formed in smaller quantities. Biogas that was produced was composed of carbon dioxide, methane and hydrogen. A modified Gompertz equation was developed to describe substrate consumption and product formation. The hydrolysis of insoluble components was the rate-limiting step in the anaerobic digestion of cattail.  相似文献   

2.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

3.
Microbial cycling of iron and sulfur in acidic coal mining lake sediments   总被引:1,自引:0,他引:1  
Lakes caused by coal mining processes are characterized by low pH, low nutrient status, and high concentrations of Fe(II) and sulfate due to the oxidation of pyrite in the surrounding mine tailings. Fe(III) produced during Fe(II) oxidation precipitates to the anoxic acidic sediment, where the microbial reduction of Fe(III) is the dominant electron-accepting process for the oxidation of organic matter, apparently mediated by acidophilic Acidiphilium species. Those bacteria can reduce a great variety of Fe(III)-(hydr)oxides and reduce Fe(III) and oxygen simultaneously which might be due to the small differences in the redox potentials under low pH conditions. Due to the absence of sulfide, Fe(II) formed in the upper 6 cm of the sediment diffuses to oxic zones in the water layer where itcan be reoxidized by Acidithiobacillus species. Thus, acidic conditions are stabilized by the cycling of iron which inhibits fermentative and sulfate-reducing activities. With increasing sediment depth, the amount of reactive iron decrease, the pH increases above 5, and fermentative and as yet unknown Fe(III)-reducing bacteria are also involved in the reduction of Fe(III). Sulfate is reduced apparently by the activity of spore-forming sulfate reducers including new species of Desulfosporosinus that have their pH optimum similar to in situconditions and are not capable of growth at pH 7. However, generation of alkalinity via sulfate reduction is reduced by the anaerobic reoxidation of sulfide back to sulfate. Thus, the microbial cycling of iron at the oxic-anoxic interface and the anaerobic cycling of sulfur maintains environmental conditions appropriate for acidophilic Fe(III)-reducing and acid-tolerant sulfate-reducing microbial communities.  相似文献   

4.
Methods for improving the anaerobic digestion of glycerol (propane-1,2,3-triol) were investigated, particularly the effects of using acclimated sludge as seeding material during start-up. Glycerol was supplied to the anaerobic digester at an organic loading rate of 2.5 g-COD L?1 day?1. Four experimental runs were carried out with varying mixing ratios of acclimated sludge to unacclimated sludge (0, 10, 20, and 33%). Calculations were performed by employing a numerical model, whose parameters were determined by experimental measurements. Methane production rate (MPR) for all runs attained similar stable values around 21.4 mmol L?1 day?1, though more time was required for attaining stable state of methane production with lower mixing ratios of acclimated sludge. The initial MPR calculated was proportional to the mixing ratio of acclimated sludge. Furthermore, molecular biological methods showed that the types of microorganisms observed in all runs were similar. These results indicate that the seeding with different mixing ratios of acclimated sludge did not affect the microbial consortia in the anaerobic digestion approaching stable state, but did affect the cell density of the useful microorganisms at the start of methane fermentation. Consequently, it was confirmed that at a higher mixing ratio of acclimated sludge, the start of methane production became more vigorous.  相似文献   

5.
Co-digestion of grease trap sludge and sewage sludge   总被引:3,自引:0,他引:3  
Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9–27% when 10–30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.  相似文献   

6.
The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552–62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8–99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2–4.8% in the 1st digester and 1.8–7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49–60% and 48.6–64.7%, respectively. Methane production rate was in the range of 0.02–0.04, 0.04–0.07, and 0.02–0.04 L/g CODrem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.  相似文献   

7.
In the pulp and paper industry, lignin and other color compounds are removed by chemical agents in bleaching process. Use of chlorine-based agents results in production of degradation products which include various chloro-organic derivatives. Since these new compounds are highly chlorinated, they cause a problem in the treatment of pulp and paper industry wastewaters. Chemical precipitation, lagooning, activated sludge, and anaerobic treatment are the processes used for treating pulp and paper effluents. Furthermore, a combination of these processes is also applicable. In this study, the effluent of Dalaman SEKA Pulp and Paper Industry was examined for its toxic effects on anaerobic microorganisms by anaerobic toxicity assay. Additionally, this wastewater was applied to a sequential biotreatment process consisting of an upflow anaerobic sludge blanket as the anaerobic stage and a once-through completely mixed stirred tank as the aerobic stage. Results indicated that: (1) Dalaman SEKA Pulp and Paper Industry wastewater exerted no inhibitory effects on the anaerobic cultures under the studied conditions, and (2) application of a sequential biological (anaerobic/aerobic) system to treat the Dalaman SEKA Pulp and Paper Industry wastewater resulted in approximately 91% COD and 58% AOX removals at a HRT of 5 and 6.54 h for anaerobic and aerobic, respectively.  相似文献   

8.
Waste nitrocellulose (NC) is regulated as a hazardous material. The objective of this study was to determine if NC exposed to denitrifying and sulfidogenic conditions would undergo sufficient removal of the nitro groups to yield a material that is no longer explosive. Enrichment cultures were established with methanol as the electron donor for nitrate-reducing conditions and lactate for sulfate-reducing conditions. NC was added to the cultures at 10 g/l. A statistically significant decrease in the nitrogen (N) content of NC occurred in both enrichment cultures, from approximately 13.1-13.2% in virgin NC to 12.2-12.4%. This was accompanied by an increase in nitrogen gas formation. The presence of a primary substrate (methanol and lactate) was necessary to affect this change; NC itself did not serve as an electron donor. In cultures that were carrying out denitrification but were then depleted of nitrate, with methanol still present, a slightly greater removal of nitro groups from NC occurred along with additional formation of nitrogen gas. NC did not have an inhibitory affect on the denitrification process but it did significantly slow the rate of lactate consumption and sulfate reduction. Fourier Transform Infrared Spectroscopy (FTIR) results indicated that NC exposed to denitrifying conditions was enriched in hydroxyl groups, consistent with removal of some of the nitro groups by hydrolysis of the nitrate esters. NC exposed to nitrate- and sulfate-reducing conditions and virgin NC were also compared based on their explosive properties using a small-scale burning test. The biologically treated NC exhibited somewhat less reactivity, but was still rated as explosive. The decrease in%N, increase in N2, and FTIR results demonstrated that NC does undergo biotransformation in the presence of nitrate- and sulfate-reducing enrichment cultures, but the extent of denitration does not appear to be adequate to yield a nonhazardous product.  相似文献   

9.
Anaerobic treatability and methane generation potential of cheese whey were determined in batch reactors. Furthermore, the effect of nutrient and trace metal supplementation on the batch anaerobic treatment, and the high-rate anaerobic treatability of cheese whey in upflow anaerobic sludge blanket (UASB) reactors were investigated. To this purpose biochemical methane potential experiments were conducted and single- and two-stage UASB reactors with granular cultures were operated. In UASB experiments significance of process staging, operational parameters such as hydraulic retention time (HRT), influent chemical oxygen demand (COD) concentration and loading rate were also investigated. The results revealed that nutrient and trace metal supplementation is vital for the anaerobic treatment of cheese whey; the anaerobic methane generation for the cheese whey studied was found to be 424 ml CH4/g COD (23.4 1 CH4/l cheese whey); undiluted cheese whey could be treated anaerobically at relatively short HRT values (2.06-4.95 days) without any significant stability problems; HRT values as low as 2-3 days can be used for the anaerobic treatment of cheese whey, with a COD removal efficiency of 95-97% at influent COD concentration of 42 700 +/- 141-55 100 +/- 283 mg/l.  相似文献   

10.
高心怡  夏天  徐向阳  朱亮 《化工环保》2017,37(3):270-275
直接种间电子传递(DIET)是近年来发现的一种微生物电子传递方式,其在废水厌氧生物处理的重要过程中起重要作用。提高DIET效率能在促进有机物厌氧降解产甲烷的同时储存更多能量,优化厌氧生物处理工艺性能并降低处理成本。本文在DIET过程特性分析的基础上,重点论述了活性炭、生物炭、碳纤维布、单壁碳纳米管4种碳材料对废水生物处理中DIET过程的促进作用,并对今后的研究方向进行了展望。  相似文献   

11.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

12.
Inocula derived from an anaerobic digester were used to study (i) their potential for methane production and (ii) the utilisation rates of different short chain fatty acids (SCFAs) by the microbial community in defined media with mono-carbon sources (formic-, acetetic-, propionic-, butyric acid) in batch culture. It could be demonstrated that the microbial reactor population could be transferred successfully to the lab, and its ability to build up methane was present even with deteriorating biogas plant performance. Therefore, this reduction in performance of the biogas plant was not due to a decrease in abundance, but due to an inactivity of the microbial community. Generally, the physico-chemical properties of the biogas plant seemed to favour hydrogenotrophic methanogens, as seen by the high metabolisation rates of formate compared with all other carbon sources. In contrast, acetoclastic methanogenesis could be shown to play a minor role in the methane production of the investigated biogas plant, although the origin of up to 66% of methane is generally suggested to be generated through acetoclastic pathway.  相似文献   

13.
Consortia were developed for the treatment of corncobs for use as a feedstock in a biogas fermentor. The treatment of corncobs with xylanolytic consortia enhanced the production of methane and biogas. All five consortia developed produced the maximum biogas and methane at a 6% loading rate and 20 days hydraulic retention time (HRT). The maximum biogas yield of 0.59m3/kg volatile solids (VS) with a methane content of 62% was produced with the KK-10 consortium. This was apparently due to a maximum hemicellulose degradation of 88%.  相似文献   

14.
The addition of straw in combination with Carbokalk, a by-product from the sugar-industry, was successfully used to stimulate microbial alkalinity generation in an acidic mining lake. To get detailed information about functions of straw, anenclosure experiment was carried out. Straw bundles were placedat the sediment surface of an acidic mining lake (ML 111) and thephysiochemical conditions and the microbiology of the sediment-water contact zone were studied. Straw was degraded by anaerobic microorganisms and dissolved organic carbon (DOC) leached from straw bundles. Pigmented flagellates responded to the DOC supply in the water column anda considerable amount of algal carbon was transported to the sediment. Straw addition led to microbial reduction of iron andsulfate in the sediment. Sulfate reduction was observed at a pHof 5.5. The pH, however, was not high enough to precipitate H2S completely. Thus, some H2S diffused into the watercolumn, where it was reoxidized. Straw did not create orstabilize an anoxic water body above the sediment. Microbial sulfate reduction and pyrite formation only took place in the sediment,whereas iron reduction also took place in the straw. Straw, however, altered the flow conditions above the sediment surfaceand prevented complete mixing of the profundal water. Straw didnot serve as a substratum for a reactive biofilm. We conclude that the most important function of straw for mining lake remediation is to be a long-term nutrient source for microbialalkalinity generation in the sediment.  相似文献   

15.
Control of GHG emission at the microbial community level   总被引:1,自引:0,他引:1  
All organic material eventually is decomposed by microorganisms, and considerable amounts of C and N end up as gaseous metabolites. The emissions of greenhouse relevant gases like carbon dioxide, methane and nitrous oxides largely depend on physico-chemical conditions like substrate quality or the redox potential of the habitat. Manipulating these conditions has a great potential for reducing greenhouse gas emissions. Such options are known from farm and waste management, as well as from wastewater treatment. In this paper examples are given how greenhouse gas production might be reduced by regulating microbial processes. Biogas production from manure, organic wastes, and landfills are given as examples how methanisation may be used to save fossil fuel. Methane oxidation, on the other hand, might alleviate the problem of methane already produced, or the conversion of aerobic wastewater treatment to anaerobic nitrogen elimination through the anaerobic ammonium oxidation process might reduce N2O release to the atmosphere. Changing the diet of ruminants, altering soil water potentials or a change of waste collection systems are other measures that affect microbial activities and that might contribute to a reduction of carbon dioxide equivalents being emitted to the atmosphere.  相似文献   

16.
Anaerobic degradation of eight commercially available biodegradable polymers was compared in two anaerobic tests using digestion sludge, according to ISO 11734 and ASTM D.5210-91. Cotton, polyhydroxybutyrate/hydroxyvalerate copolymer (PHB/PHV), starch blend, thermoplastic cellulose acetate, and cellulose acetate fibers proved to be anaerobically degradable, but only a low extent of degradation was found for polylactide, polyvinylalcohol, and polycaprolactone. Both test methods gave the same overall results, but with the ISO medium, longer lag phases and greater ranges of variation in the results were observed. These effects are presumably due to low concentrations of carbon dioxide in the ISO medium. Carbon dioxide has been demonstrated to be essential for the growth of various anaerobic bacteria, notably homoacetogenic and methanogenic bacteria.  相似文献   

17.
The aim of this study was to investigate the effect of rumen fluid and leachate-based media on the ability of rumen and anaerobic digester derived microorganisms to degrade cellulose. The results demonstrated that rumen microorganisms are not capable of solubilising cellulose, or generating biomass, at an optimal rate when grown in leachate-based media when compared to the rates achieved when grown in rumen-based media. In contrast, the rate of biomass generation and cellulose solubilisation by digester microorganisms was not strongly affected by a change in media type. Several authors have theorised that cellulose degradation rates in anaerobic digesters can be increased by inoculation with rumen-derived microorganisms. The results from this study show that this approach is unlikely to be successful, because the rumen microorganisms would likely be unable to solubilise and out-compete native solid waste microorganisms for the cellulose in a foreign (leachate based) medium.  相似文献   

18.
Systematic screening of 45 soil fungi for degradation polyhydroxyalkanoic acids (PHAs) has led to the selection of 6 potent Aspergillus isolates belonging to A. flavus, A. oryzae, A. parasiticus, and A. racemosus. Degradation of PHAs as determined by tube assay method revealed that these Aspergillus spp. were more efficient in degrading poly(3-hydroxybutyrate) [P(3HB)] compared to copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (P3HB-co-16% 3HV). Moreover, the extent of degradation in mineral base medium was much better than those in complex organic medium. For all the Aspergillus spp. tested, maximum degradation was recorded at a temperature of 37°C with significant inhibition of growth. The optimum pH range for degradation was 6.5–7.0 with degradation being maximum at pH 6.8. The extent of polymer degradation increased with increase in substrate concentration, the optimum concentration for most of the cultures being 0.4% and 0.2% (w/v) for P(3HB) and P(3HB-co-16%3HV) respectively. Supplementation of the degradation medium with additional carbon sources exerted significant inhibitory effect on both P(3HB) and P(3HB-co-16%3HV) degradation.  相似文献   

19.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

20.
During the past decade, various promising technologies have been developed for the decontamination of groundwater insitu which do not require long-term pumping or high energy consumption. One approach is to use funnel and gate technology. In the case described here, the combination of adsorption of contaminants on granular activated carbon (GAC) and its biodegradation is applied to considerably extend the operating time of the filling material in the barrier system. Monochlorobenzene (MCB), a recalcitrant groundwater contaminant under anaerobic conditions, undergoes high-capacity adsorption on GAC up to about 450 mg per gram. Aerobic enrichment cultures, obtained from a contaminated aquifer, were able to mineralize initially adsorbed MCB. In respirometer experiments the rate of carbon dioxide formation was dependent on the equilibrium concentration of MCB. The oxygen consumption of activated carbon by means of autoxidative reactions may delay aerobic biodegradation in GAC filters. The oxygen uptake of pristine activated carbon amounted to 5.6 mg per gram GAC in laboratory column experiments. When GAC was pre-loaded with MCB, autoxidation rates were considerably reduced. Hence, it is advisable not to stimulate the biodegradation of MCB by oxygen supply in GAC biobarriers until after an initial period of solely sorptive MCB removal from the groundwater flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号