首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1). Metal concentrations of eight elements were measured in roots, stems and leaves and correlated to total and soil water metal concentrations. Dry weight root biomass, number of leaves and shoot length were measured to identify eventual negative responses of the trees. No growth inhibition was observed for both clones for any of the treatments (max. 41.4 mg kg-1 Cd, 1914 mg kg-1 Cr, 2422 mg kg-1 Zn, 655 mg kg-1 Pb), allowing their use for phytoextraction on a broad range of contaminated sediments. However, dry weight root biomass and total shoot length were significantly lower for S. viminalis compared to S. fragilis for all treatments. Willow foliar Cd concentrations were strongly correlated with soil and soil water Cd concentrations. Both clones exhibited high accumulation levels of Cd and Zn in aboveground plant parts, making them suitable subjects for phytoextraction research. Cu, Cr, Pb, Fe, Mn and Ni were found mainly in the roots. Bioconcentration factors of Cd and Zn in the leaves were highest for the treatments with the lowest soil Cd and Zn concentration.  相似文献   

2.
Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO3-extractable metals), changes in metal bio/availability (0.1 M NaNO3-extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMET biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO3-extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system.  相似文献   

3.
Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.  相似文献   

4.
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.  相似文献   

5.
Effects of major nutrient additions on metal uptake in phytoplankton   总被引:14,自引:0,他引:14  
We examined the influences of major nutrients (N, P, Si) on the accumulation of three trace metals [Cd, Se(IV), and Zn] in four species of marine phytoplankton (diatom, green alga, dinoflagellate, prasinophyte). Relative metal uptake was quantified by the kinetic measurements of metal concentration factor over a short exposure period. Our study demonstrated that nutrient addition significantly influenced the metal uptake rate and the cell growth rate in all four phytoplankton species. An increase in ambient N concentration considerably enhanced metal uptake by the cells. The dry weight concentration factor increased by 2.4-14.9 times for Cd, 1.1-4.0 times for Se, and 1.1-5.4 times for Zn in all four phytoplankton species with an addition of 176.4 microM N. The effects of P or Si addition on metal uptake and cell growth were less pronounced than the effects of N addition. Under most circumstances the rate of metal uptake increased exponentially with increasing cell growth rate constant. Only Se(IV) uptake in the diatom Phaeodactylum tricornutum was not correlated with cell growth rate. Se(IV) was not accumulated by the green algae Chlorella autotrophica at a high P concentration (7.2 microM), but appreciable accumulation was documented in cells inoculated without P addition. Our study therefore demonstrated that nutrient enrichments in many coastal waters can considerably affect trace metal uptake in phytoplankton and presumably metal trophic transfer in marine food chains.  相似文献   

6.

Trace metal element contamination in mining areas is always a huge environmental challenge for the global mining industry. In this study, an abandoned sphalerite mine near the Yanshan Mountains was selected as subject to evaluate the soil and water contamination caused by small-scale mining. The results show that (1) Pearson correlation matrix and principal component analysis (PCA) results reveal that Zn, Cu, Cd, and Pb were greatly affected by the operation of mines, especially mineral tailings. The contents of trace metal elements decrease with the increase of the distance from the mining area. Zinc, Pb, and Cd were discovered in almost all soil samples, and Zn accounted for about 80% of pollution of the topsoil. (2) The trace element pollution levels in the topsoil of the three villages were ranked as follows: Cd?>?Cu?>?Pb~Zn. The potential ecological risk of farmland around the mine ranges from lower to higher, with Cd being the most harmful. (3) Human health risk assessment results show that trace elements in the mining area pose obvious non-carcinogenic health risks to children while the risks to adults are not equally obvious. The carcinogenic risk of Cd and Cr is within a safe range and does not pose an obvious cancer risk to the population.

  相似文献   

7.
几种模拟处理方式污泥淋出液重金属与养分特征   总被引:2,自引:0,他引:2  
为了减少城市污泥重金属对农田的污染,更好地实现污泥农业资源化利用,通过盆栽实验研究不同处理(对照、黑网、附Fe黑网、附Fe黑网+K2SO4及附Fe黑网+玉米)对城市污泥淋出液重金属和养分含量等的影响。结果表明,黑网可降低污泥淋出液的Zn﹑Cd总量,且没有减少污泥淋出液中氮、磷和钾的总量。Fe(OH)3可使淋出液中Zn总量降低,但同时也显著减少了淋出液中的磷总量。K2SO4可降低淋出液中的Cu总量,且促进Fe结合磷的释放。玉米的种植可使污泥的总重降低,同时玉米籽粒和茎叶重金属含量达到饲料标准。综合来看,任何处理每次淋出液的Cu、Zn、Pb、Cd浓度均符合农田灌溉水标准,淋出液氮、磷、钾量占原污泥中氮、磷、钾总量的比例(0.98%~9.88%)远远大于重金属元素(Cu,Zn,Pb,Cd)占原污泥对应重金属总量的比例(0.04%~0.41%),污泥淋出液作为农田灌溉水进行肥水利用将是污泥农业资源化利用的适合途径,同时黑网+玉米处理可能是较理想的污泥综合处理利用方式。  相似文献   

8.
To evaluate the effects of manure application on continuous maize seed production, 10-year cattle manure on soil properties, heavy metal in soil and plant were evaluated and investigated in calcareous soil. Results showed that manure application increased soil organic matter, total and available nutrients, pH, and electrical conductivity (EC), and the most massive rate caused the highest increase. Manure application led to an increase in exchangeable fraction and an increase of availability of heavy metal. Residual fraction was dominant among all metals, followed by the fraction bound to Fe and Mn oxides. Manure application involved accumulation of heavy metal on corn, but the accumulation in the stem is higher than that in the seed. Manure application led to a high deficiency of total Zn and high accumulation of total Cd in the soil of corn seed production, which should be a risk for safety seed production in calcareous soil in Northwest China.  相似文献   

9.
A total of 224 agricultural soil samples from Huanghuai Plain in China were investigated for the concentrations of seven heavy metals (As, Cd, Cr, Hg, Ni, Pb, and Zn). The mean concentrations of the metals were 12, 0.17, 79, 0.04, 35, 25, and 74 mg/kg, respectively. These values are similar or slightly higher than background values in this region, except for Cd with a mean nearly twice the background value. The estimated ecological risks based on contamination factors and potential ecological risk indexes are also mostly low, but considerable for Cd and Hg. Multivariate analysis (including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) clearly revealed three distinct metal groups, i.e., Cr/Ni/Zn, As/Cd/Pb, and Hg, whose concentrations were closely associated with the distribution and pollution characteristics of industries in and around the plain. The main anthropogenic sources for the three metal groups were identified as atmospheric deposition, sewage irrigation/fertilizers usage, and atmospheric deposition/irrigation water, respectively. The present results are well suited for planning, risk assessment, and decision making by environmental managers of this region.  相似文献   

10.
Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb).  相似文献   

11.
Metal mobility at an old, heavily loaded sludge application site   总被引:8,自引:0,他引:8  
This study was undertaken to determine the present distribution and mobility of sludge-applied metals at an old land application site. Trace metals concentrations were determined for soils (using 4 M HNO3 extracts), soil leachates (collected with passive wick lysimeters over a 2.5-year period), and plant tissue from a field site which received a heavy loading of wastewater sludge in 1978 and an adjacent control plot. Blue dye was used to indicate preferential percolate flowpaths in the sludge plot soil for sampling and comparison with bulk soil metals concentrations. After nearly 20 years, metals in the sludge plot leachate were found at significantly greater concentrations than in the control plot, exceeding drinking water standards for Cd, Ni, Zn, and B. Annual metals fluxes were only a fraction of the current soil metal contents, and do not account for the apparent substantial past metals losses determined in a related study. Elevated Cd, Cu, and Ni levels were found in grass growing on the sludge plot. Despite heavy loadings, fine soil texture (silty clay loam) and evidence of past and ongoing metals leaching, examination of the bulk subsoil indicated no statistically significant increases in metals concentrations (even in a calcareous subsoil horizon with elevated pH) when comparing pooled sludge plot soil profiles with controls. Sampling of dyed preferential flow paths in the sludge plot detected only slight increases in several metals. Preferential flow and metal complexation with soluble organics apparently allow leaching without easily detectable readsorption in the subsoil. The lack of significant metal deposition in subsoil may not be reliable evidence for immobility of sludge-applied metals.  相似文献   

12.
Three-day dermal exposure of Dendrobaena veneta to metal ions differentially disrupts the immunocompetence/pathogen balance. Zn does not accumulate in the earthworm body, Cu accumulation is temperature-independent while Cd accumulation is stronger at 22 degrees C than at 10 degrees C. During in vitro incubation with metal ions at 22 degrees C, growth of coelom-derived bacteria is enhanced by Zn, but significantly or almost completely inhibited by Cu or Cd. In contrast, under in vivo conditions at 22 degrees C, bacterial load is decreased only after Cd exposure, but increased after Zn and Cu exposures. At 10 degrees C bacteria growth is almost completely inhibited in all groups except Cu-treated animals. Coelomocyte number is unaffected in animals exposed to Zn, but significantly decreased after exposure to Cd (at 22 degrees C) and Cu (at 22 degrees C and 10 degrees C) with concomitant changes of amoebocyte-to-eleocyte ratio in favour of amoebocytes. Metal exposure up-regulates expression of metallothioneins in coelomocytes, mainly amoebocytes.  相似文献   

13.
Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils.  相似文献   

14.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

15.
The effect of heavy metal additions in past sewage sludge applications on soil metal availability and the growth and yield of crops was evaluated at two sites in the UK. At Gleadthorpe, sewage sludges enriched with salts of zinc (Zn), copper (Cu) and nickel (Ni) had been applied to a loamy sand in 1982 and additionally naturally contaminated Zn and Cu sludge cakes in 1986. At Rosemaund, sewage sludges naturally contaminated with Zn, Cu, Ni and chromium (Cr) had been applied in 1968-1971 to a sandy loam. From 1994 to 1997, the yields of both cereals and legumes at Gleadthorpe were up to 3 t/ha lower than the no-sludge control where total topsoil Zn and Cu concentrations exceeded 200 and 120 mg/kg, respectively, but only when topsoil ammonium nitrate extractable metal levels also exceeded 40 mg/kg Zn and 0.9 mg/kg Cu. At Rosemaund, yields were only decreased where total topsoil Cu concentrations exceeded 220 mg/kg or 0.7 mg/kg ammonium nitrate extractable Cu. These results demonstrate the importance of measuring extractable as well as total heavy metal concentrations in topsoils when assessing likely effects on plant yields and metal uptakes, and setting soil quality criteria.  相似文献   

16.
The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda’s habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.  相似文献   

17.
Urban soil is an important component of urban ecosystems. This study focuses on heavy metal contamination in soils of Wien (Austria) and results are compared to those for a few large European cities. We analysed the elemental contents of 96 samples of topsoil from urban, suburban and rural areas in Wien along a dynamic (floodplain forest) and a stable (oak–hornbeam forest) urbanization gradient. The following elements were quantified using ICP-OES technique: Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Pb, P, S and Zn. For heavy metals PI (pollution index) values were used to assess the level of pollution. The PI values indicated high level of pollution by Pb in the suburban and rural area of stable gradient and in the urban area of dynamic gradient; moderate level of pollution was indicated for Cd in the urban area of stable gradient. The level of pollution was moderate for Co in the suburban and rural area of the stable gradient, and for Cu in suburban area of stable gradient, and urban area of dynamic gradient. The pollution level of Zn was moderate in all areas. Urban soils, especially in urban parks and green areas may have a direct influence on human health. Thus, the elemental analysis of soil samples is one of the best ways to study the effects of urbanization. Our results indicated that the heavy metal contamination was higher in Wien than in a few large European cities.  相似文献   

18.
The accumulation of heavy metals in farmland has become an important issue related to food security and environmental risk. The annual inputs of heavy metals (As, Cd, Hg, Pb, Cr, Cu, and Zn) to agricultural soil for a full year in Hainan Island have been studied. Three fluxes through the cultivated horizon were considered: (1) atmospheric depositions, (2) fertilization, and (3) irrigation water. The corresponding samples were collected and analyzed on a large regional scale. The total input fluxes show obvious spatial variability among different regions. The inventory of heavy metal inputs to agricultural land demonstrates that agricultural soil is potentially at risk of heavy metal accumulation from irrigation water. The potential at risk of heavy metal accumulation from atmospheric deposition and fertilizer is relatively low compared to irrigation. The results indicate that Hg is the element of prior concern for agricultural soil, followed by Cd and As, and other heavy metal elements represent little threat to the environment in the study area. This work provides baseline information to develop policies to control and reduce toxic elements accumulated in agricultural soil.  相似文献   

19.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

20.
Genetic engineering of plants for phytoremediation is thought to be possible based on results using model plants expressing genes involved in heavy metal resistance, which improve the plant’s tolerance of heavy metals and accumulation capacity. The next step of progress in this technology requires the genetic engineering of plants that produce large amounts of biomass and the testing of these transgenic plants in contaminated soils. Thus, we transformed a sterile line of poplar Populus alba X P. tremula var. glandulosa with a heavy metal resistance gene, ScYCF1 (yeast cadmium factor 1), which encodes a transporter that sequesters toxic metal(loid)s into the vacuoles of budding yeast, and tested these transgenic plants in soil taken from a closed mine site contaminated with multiple toxic metal(loid)s under greenhouse and field conditions. The YCF1-expressing transgenic poplar plants exhibited enhanced growth, reduced toxicity symptoms, and increased Cd content in the aerial tissue compared to the non-transgenic plants. Furthermore, the plants accumulated increased amounts of Cd, Zn, and Pb in the root, because they could establish an extensive root system in mine tailing soil. These results suggest that the generation of YCF1-expressing transgenic poplar represents the first step towards producing plants for phytoremediation. The YCF1-expressing poplar may be useful for phytostabilization and phytoattenuation, especially in highly contaminated regions, where wild-type plants cannot survive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号