首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are one of the main classes of contaminants in the terrestrial environment. Concentrations of biphenyl, fluorene, phenanthrene and pyrene were added to soil samples in order to investigate the anaerobic degradation potential of PAHs under denitrifying conditions. A mixed population of microorganisms obtained from a paddy soil was incubated for 20 days in anaerobic conditions in the presence of soil alone or with nitrate, adding, as electron donors, PAHs and, in some samples, glucose or acetate. At regular time intervals oxidation-reduction potential, PAHs concentration, microbial ATP and nitrate concentration into the solution were measured. Degradation trends for each hydrocarbon are similar under all conditions, indicating that the molecular conformation prevails over other parameters in controlling the degradation. Poor degradation results were obtained when PAHs were the only organic matter available for the inoculum, thus confirming the recalcitrance to degradation of these compounds. Biodegradation was influenced by the addition of other carbon sources. As better degradation results were generally obtained when acetate or glucose were added, the hypothesis of a co-metabolic enhancement of PAH biodegradation seems likely. Thus, anaerobic biodegradation of PAHs studied, biphenyl, fluorene, phenanthrene and pyrene, seems to be possible both through fermentative and respiratory metabolism, provided that low molecular weight co-metabolites and suitable electron acceptors (nitrate) are present.  相似文献   

2.
Zhuang L  Gui L  Gillham RW 《Chemosphere》2012,89(7):810-816
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350 mg L−1) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.  相似文献   

3.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

4.
This study investigated the anaerobic degradation of five polycyclic aromatic hydrocarbons (PAHs) from Erren River sediment in southern Taiwan. The degradation rates of PAH were in the order: acenaphthene > fluorene > phenanthrene > anthracene > pyrene. The degradation rate was enhanced when the five compounds were present simultaneously in river sediment. Comparison of the PAH degradation rates under three reducing conditions showed the following order: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The addition of electron donors (acetate, lactate and pyruvate) enhanced PAH degradation under methanogenic and sulfate-reducing conditions. However, the addition of acetate, lactate or pyruvate inhibited PAH degradation under nitrate-reducing conditions. The addition of heavy metals, nonylphenol and phthalate esters (PAEs) inhibited PAH degradation. Our results show that sulfate-reducing bacteria, methanogen and eubacteria are involved in the degradation of PAH; sulfate-reducing bacteria constitute a major microbial component in PAH degradation. Of the microorganism strains isolated from the sediment samples, we found that strain ER9 expressed the greatest biodegrading ability.  相似文献   

5.
Shibata A  Toyota K  Miyake K  Katayama A 《Chemosphere》2007,68(11):2096-2103
Anaerobic degradation of phenol, p-cresol, 4-n-propylphenol (n-PP), 4-i-propylphenol (i-PP), 4-n-butylphenol (n-BP) and 4-sec-butylphenol (sec-BP) was observed in a paddy soil supplemented with nitrate. We detected the metabolites 4′-hydroxypropiophenone (HPP) from n-PP, 4-i-propenylphenol from i-PP, and 4-(1-butenyl)phenol and 4′-hydroxybutyrophenone (HBP) from n-BP. Compared with the original soils, Betaproteobacteria became predominant in the microcosm during the degradation of phenol and p-cresol whereas no remarkable change was observed in the community degrading propylphenols and butylphenols. The microcosm, however, did not degrade 4-t-butylphenol (t-BP), 4-t-octylphenol (t-OP) and 4-n-octylphenol (n-OP). Paddy soil supplemented with sulfate or iron (III) as electron acceptors did not degrade phenol and 4-alkylphenols with the exception of the degradation of p-cresol in sulfate-reducing conditions. It was demonstrated for the first time that anaerobic microbial degradation of alkylphenols, in a paddy soil supplemented with nitrate as an electron acceptor, occurred via oxidation of the alpha carbon in the alkyl chain.  相似文献   

6.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

7.
This study investigated the effects of various factors on the anaerobic degradation of nonylphenol (NP) in soil. The results show that the optimal pH for NP degradation was 7.0 and that the degradation rate was enhanced when the temperature was increased. The addition of compost enhanced NP degradation. The individual addition of the electron donors lactate, acetate, and pyruvate inhibited NP degradation. The high-to-low order of NP degradation rates under three anaerobic conditions was sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the anaerobic degradation of NP, with sulfate-reducing bacteria being a major component of the soil. Of the anaerobic strains isolated from the soil samples, strain AT3 expressed the best ability to biodegrade NP.  相似文献   

8.
Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil   总被引:20,自引:0,他引:20  
Chang BV  Shiung LC  Yuan SY 《Chemosphere》2002,48(7):717-724
Known concentrations of phenanthrene, pyrene, anthracene, fluorene and acenapthene were added to soil samples to investigate the anaerobic degradation potential of polycyclic aromatic hydrocarbon (PAH). Consortia-treated river sediments taken from known sites of long-term pollution were added as inoculum. Mixtures of soil, consortia, and PAH (individually or combined) were amended with nutrients and batch incubated. High-to-low degradation rates for both soil types were phenanthrene > pyrene > anthracene > fluorene > acenaphthene. Degradation rates were faster in Taida soil than in Guishan soil. Faster individual PAH degradation rates were also observed in cultures containing a mixture of PAH substrates compared to the presence of a single substrate. Optimal incubation conditions were noted as pH 8.0 and 30 degrees C. Degradation was enhanced for PAH by the addition of acetate, lactate, or pyruvate. The addition of municipal sewage or oil refinery sludge to the soil samples stimulated PAH degradation. Biodegradation was also measured under three anaerobic conditions; results show the high-to-low order of biodegradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the PAH degradation; sulfate-reducing bacteria constitute a major component of the PAH-adapted consortia.  相似文献   

9.
The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1 %, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p?<?0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.  相似文献   

10.
Degradation of nonylphenol by anaerobic microorganisms from river sediment   总被引:17,自引:0,他引:17  
Chang BV  Yu CH  Yuan SY 《Chemosphere》2004,55(4):493-500
We investigated the degradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by anaerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Anaerobic degradation rate constants (k1) and half-lives (t1/2) for NP (2 microg/g) ranged from 0.010 to 0.015 1/day and 46.2 to 69.3 days respectively. For NP1EO (2 microg/g), the ranges were 0.009-0.014 1/day and 49.5-77.0 days respectively. Degradation rates for NP and NP1EO were enhanced by increasing temperature and inhibited by the addition of acetate, pyruvate, lactate, manganese dioxide, ferric chloride, sodium chloride, heavy metals, and phthalic acid esters. Degradation was also measured under three anaerobic conditions. Results show the high-to-low order of degradation rates to be sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. The results show that sulfate-reducing bacteria, methanogen, and eubacteria are involved in the degradation of NP and NP1EO, with sulfate-reducing bacteria being a major component of the river sediment.  相似文献   

11.
The microbial dechlorination of seven kinds of polychlorinated biphenyls (PCBs) by anaerobic microorganisms from river sediment was investigated. Dechlorination rates were found to be affected by the chlorine level of PCB congeners; dechlorination rates decreased as chlorine levels increased. Dechlorination rates were fastest under methanogenic conditions and slowest under nitrate-reducing conditions. The addition of individual electron donors (acetate, pyruvate, and lactate) enhanced the dechlorination of PCB congeners under methanogenic and sulfate-reducing conditions but delayed the dechlorination of PCB congeners under nitrate-reducing conditions. PCB congener dechlorination also was delayed by the addition of various polycyclic aromatic hydrocarbons (PAHs) under three reducing conditions and by surfactants, such as brij30, triton SN70, and triton N101. The results suggest that methanogen, sulfate-reducing bacteria, and nitrate-reducing bacteria all are involved in the dechlorination of PCB congeners.  相似文献   

12.
Bae HS  Yamagishi T  Suwa Y 《Chemosphere》2004,55(1):93-100
An anaerobic continuous-flow fixed-bed column reactor capable of degrading 3-chlorobenzoate (3-CBA) under denitrifying conditions was established, and its rate reached 2.26 mM d(-1). The denitrifying population completely degraded 3-CBA when supplied at 0.1-0.54 mM, but its activity was partly suppressed when 3-CBA was supplied at 0.89 mM. Nitrate was concomitantly consumed throughout the operation of the reactor, the amount of which was similar to or up to 35% higher than the theoretical stoichiometric value that was calculated by assuming that 3-CBA degradation is coupled with denitrification. Batch incubation experiments proved that nitrate is strictly required for 3-CBA degradation in the absence of molecular oxygen. The population also degraded 3-CBA aerobically. Benzoate and 4-CBA were degraded under denitrifying conditions as well as 3-CBA, but 2-CBA was not. Considering that the previously reported denitrifying 3-CBA-degrading cultures do not exhibit 4-CBA degradation under denitrifying conditions, nor aerobic 3-CBA degradation [FEMS Microbiol. Lett. 144 (1996) 213, Appl. Environ. Microbiol. 66 (2000) 3446], the microbial population developed in this experiment was physiologically versatile with respect to the utilization of both electron donors and electron acceptors.  相似文献   

13.
The enriched mixed culture aerobic and anaerobic bacteria from agricultural soils were used to study the degradation of endosulfan (ES) in aqueous and soil slurry environments. The extent of biodegradation was ∼95% in aqueous and ∼65% in soil slurry during 15 d in aerobic studies and, ∼80% in aqueous and ∼60% in soil slurry during 60 d in anaerobic studies. The pathways of aerobic and anaerobic degradation of ES were modeled using combination of Monod no growth model and first order kinetics. The rate of biodegradation of β-isomer was faster compared to α-isomer. Conversion of ES to endosulfan sulfate (ESS) and endosulfan diol (ESD) were the rate limiting steps in aerobic medium and, the hydrolysis of ES to ESD was the rate limiting step in anaerobic medium. The mass balance indicated further degradation of endosulfan ether (ESE) and endosulfan lactone (ESL), but no end-products were identified. In the soil slurries, the rates of degradation of sorbed contaminants were slower. As a result, net rate of degradation reduced, increasing the persistence of the compounds. The soil phase degradation rate of β-isomer was slowed down more compared with α-isomer, which was attributed to its higher partition coefficient on the soil.  相似文献   

14.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

15.
Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge   总被引:1,自引:0,他引:1  
Lu J  Jin Q  He Y  Wu J  Zhang W  Zhao J 《Chemosphere》2008,71(2):345-351
Anaerobic biodegradation behavior of nonylphenol polyethoxylates (NPEOs) was investigated. Results showed that terminal electron acceptors, organic matters, initial concentration, and temperature had great influence on the anaerobic biodegradation of NPEOs. Anaerobic biodegradation of NPEOs could be enhanced by adding sulfate or nitrate while this process could be inhibited by adding organic matters. The maximum removal rate increased 1.24 microM d(-1) for each ten micromoles increase in initial concentration. The decrease in temperature caused a sharp decrease in the removal efficiency of NPEOs. The temperature coefficient (PHI) for the anaerobic biodegradation of NPEOs was 0.01 degrees C(-1). Nonylphenol (NP), the typical intermediate of NPEOs, could inhibit the anaerobic biodegradation of NPEOs only at high concentration. However, these environmental factors had no effect on the anaerobic biodegradation pathway of NPEOs. The accumulation of NP and short-chain NPEOs during NPEO biodegradation led to a significant increase in the estrogenic activity during the biodegradation period.  相似文献   

16.
Luo W  D'Angelo EM  Coyne MS 《Chemosphere》2008,70(3):364-373
Certain organic compounds, including biphenyl and salicylic acid, stimulate polychlorinated biphenyl (PCB) degradation by microorganisms in some environments. However, the usefulness of these amendments for improving PCB removal by microorganisms from diverse habitats has not been extensively explored. This study evaluated the effects of biphenyl, salicylic acid, and glucose on changes in aerobic PCB removal and bacterial communities from an agricultural soil, a wetland peat soil, a river sediment, and a mixture of these samples. PCB removal patterns were significantly different between soils and sediments amended with carbon compounds: (i) terrestrial soil microorganisms removed more PCBs than river sediment microorganisms, particularly with regard to PCBs with >4 chlorine substituents, (ii) glucose-supplemented, agricultural soil microorganisms removed more hexachlorobiphenyl than unsupplemented samples, (iii) biphenyl-supplemented, river sediment microorganisms removed more di- and tri-chlorobiphenyls than unamended samples. Carbon amendments also caused unique shifts in soil and sediment bacterial communities, as determined by specific changes in bacterial 16S rRNA denaturing gradient gel electrophoresis banding patterns. These results indicate that organic carbon amendments had site-specific effects on bacterial populations and PCB removal. Further work is needed to more accurately characterize PCB degrading communities and functional gene expression in diverse types of environments to better understand how they respond to bioremediation treatments.  相似文献   

17.
Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L(-1) toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5+/-6.2 mg L(-1)) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.  相似文献   

18.
介绍了PCBs紫外光降解的机理及研究进展 ,讨论了影响PCBs光降解的主要因素 ,即环上的氯原子数目、取代位置及所处的微环境均显著地影响PCBs的光降解速率。简述了PCBs生物降解的研究进展 ,重点概述了好氧降解、厌氧降解及好氧厌氧协同作用的机理及特点。最后 ,讨论了PCBs生物降解和光降解的互补性 ,介绍了最近的研究进展 ,指出光降解和生物降解耦合将加快PCBs的移走速率 ,提出了PCBs污染土壤原位修复需要进一步解决的问题。  相似文献   

19.
The biodegradation of phenols (5, 60, 600 mg l−1) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer. The aqueous phase was sampled and analyzed for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms.The redox conditions in the anaerobic microcosms were mixed nitrate and Fe(III) reducing. Nitrate and Fe(III) were apparently the dominant electron acceptors at high and low nitrate concentrations, respectively. When biomass growth is taken into account, nitrate and Fe(III) reduction constituted sufficient electron acceptor capacity for the mineralization of the phenols observed to be degraded even at an initial phenols concentration of 60 mg l−1 (high) in an unamended microcosm, whereas nitrate reduction alone is unlikely to have provided sufficient electron acceptor capacity for the observed degradation of the phenols in the unamended microcosm.For microcosm systems, with solid aquifer materials, dissolution of organic substances from the solid material may occur. A quantitative determination of the speciation (mineral types and quantity) of electron acceptors associated with the solids, at levels relevant for degradation of specific organic compounds in aquifers, cannot always be obtained. Hence, complete mass balances of electron acceptor consumption for specific organic compounds degradation are difficult to confine. For aquifer materials with low initial Fe(II) content, Fe(II) determinations on solids and in aqueous phase samples may provide valuable information on Fe(III) reduction. However, in microcosms with natural sediments and where electron acceptors are associated with the sediments, complete mass-balances for substrates and electron acceptors are not likely to be obtained.  相似文献   

20.
Changes in bioavailability of pyrene in three uncontaminated soils were examined under aerobic and anaerobic conditions. Three soils were aerobically aged with pyrene and [(14)C]pyrene for 63 days, then incubated with water, nitrate, or sulfate under aerobic or anaerobic conditions for one year. Under aerobic conditions, microorganisms in two soils mineralized 58-82% of the added [(14)C]pyrene. The two soils amended with nitrate were seen to have enhanced aerobic mineralization rates. In one of these soils, non-extractable pyrene was seen to decrease over the course of the study due to desorption and mineralization, nitrate amendment enhanced this effect. Under anaerobic conditions, generated with a N(2):CO(2)(g) headspace, two soils with nitrate or sulfate amendment showed an increase in extractable [(14)C]pyrene at 365 days relative to inhibited controls, presumably due to microbially mediated oxidation-reduction potential and pH alteration of the soil environment. These observations in different soils incubated under aerobic and anaerobic conditions have important implications relative to the impact of microbial electron acceptors on bioavailability and transport of non-polar organic compounds in the environment suggesting that, given enough time, under the appropriate environmental conditions, non-extractable material becomes bioavailable. This information should be considered when assessing site specific exposure risks at PAH contaminated locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号