首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
河道污染质垂向迁移对地下水影响的研究   总被引:4,自引:1,他引:4  
包气带是连接地表水和地下水的重要通道,对地下水资源有很好的"屏障"功能,而近年来工农业废水及生活污水的大量排放已影响到了地下水的"安全".为此,在渭河河漫滩进行了模拟河流的垂向入渗试验,并通过建立数学模型对水分和六价铬在具有弱透水层的多层介质中的迁移进行了模拟运算.试验和模拟结果一致表明,弱透水层虽对地下水有很好的保护作用,但在上部土壤层易形成面状污染带,而且由于大的浓度梯度作用,一旦污染质穿透该层将很快污染到地下水.  相似文献   

2.
有机污染物在包气带中迁移转化试验研究   总被引:3,自引:0,他引:3  
采集一定浓度的有机物废水 ,在试验室内进行了静态吸附、静态降解和动态土柱试验 ,对COD在包气带中迁移转化规律进行研究 ,提出了描述COD在包气带中迁移转化规律的数学模型。结果表明 :包气带对COD的吸附过程是线性的 ,可用亨利吸附模式s =Kdc +s0 表示 ,吸附系数Kd=0 .0 6 93;包气带对COD的降解曲线基本符合一级动力学方程c =c0 e-k1 t,降解系数k1=0 .0 4 99d-1;弥散试验测得弥散系数D =0 .0 0 2 4 2m2 /d。COD在包气带中的迁移转化过程是弥散、吸附、降解等多种作用共同作用的结果。  相似文献   

3.
多相催化-臭氧氧化法处理模拟有机磷农药废水   总被引:1,自引:0,他引:1  
实验通过臭氧氧化法来降解模拟废水中的有机磷农药,将其转化为无害物质,并试验研究了在废水中加入2种自制的催化剂对降解结果的影响。采用气相色谱法测定水中有机磷农药的量。结果表明,只用臭氧处理的情况下1周后有机磷的去除率为78.03%;在催化剂A存在下,去除率可达93.85%;在催化剂B存在下,去除率可达为88.35%。结果表明,臭氧氧化法对此类污水具有较好的降解作用,尤其在有催化剂存在的情况下处理效果更好,在室温和中性介质中均属于一级反应。  相似文献   

4.
利用基因工程菌BL21处理有机磷混合农药废水的研究   总被引:1,自引:0,他引:1  
研究了悬浮状态和固定化状态的基因工程菌BL21对有机磷混合农药废水的降解特性.工程菌能快速、高效地降解有机磷混合农药,其最适底物是对硫磷,而马拉硫磷不能被工程菌降解.不同农药降解速率的差别造成了不同有机磷农药的降解过程需要用不同的动力学模型来描述.比较固定化状态和悬浮状态的工程菌的降解效果可知,固定化工程菌的降解活性较后者明显降低,其比降解速率大约仅为后者的20%.考察固定化工程菌长期运行的效果,发现其降解活性保存良好,工程菌稳定性大大提高,未出现固定化细胞溶涨、破碎现象.固定化后,工程菌的比降解速率虽然比悬浮工程菌降低了,但固定化工程菌更适用于长期运行的废水处理系统.  相似文献   

5.
双酚A和典型类固醇环境激素迁移转化研究进展   总被引:5,自引:0,他引:5  
近年来有关环境激素污染的认知、研究与防治已经开始受到全球的重视,其中双酚A(BPA)和类固醇是环境中检出频率较高的几种环境激素.国外有关BPA和类固醇环境激素的调查和其迁移转化的研究已经广泛展开,但我国仍处于起步阶段.综述了国内外BPA和两种典型类固醇激素17β-雌二醇(E2)和17α-乙炔基雌二醇(EE2)的研究进展,介绍了其基本性质、用途、危害、环境中浓度和其迁移转化规律;指出为了阐明BPA、E2和EE2在环境中危害,有关其吸附、生物降解和光降解等迁移转化规律,及各迁移转化过程之间协同作用与相互影响的研究还有待于进一步深入.  相似文献   

6.
多相催化-臭氧氧化法处理模拟有机磷农药废水   总被引:12,自引:0,他引:12  
实验通过臭氧氧化法来降解模拟废水中的有机磷农药,将其转化为无害物质,并试验研究了在废水中加入2种自制的催化剂对降解结果的影响。采用气相色谱法测定水中有机磷农药的量。结果表明,只用臭氧处理的情况下1周后有机磷的去除率为78.03%;在催化剂A存在下,去除率可达93.85%;在催化剂B存在下,去除率可达为88.35%。结果表明,臭氧氧化法对此类污水:具有较好的降解作用,尤其在有催化剂存在的情况下处理效果更好,在室温和中性介质中均属于一级反应。  相似文献   

7.
有机磷农药大多数是高效低残留的杀虫剂.广泛用于蔬菜上病虫害的防治,它的应用不仅污染了环境,而且还影响了蔬菜的质量;严重地影响了人类的健康,国外研究人员已不同程度地探索了有机磷农药在环境中的归宿及降解规律.我国也有从事这方面工作的研究和报导,但对有机磷农药在蔬菜上降解规律的研究尚未见到报导.  相似文献   

8.
通过对复合垂直流渗滤系统中增加球型填料,利用生物强化提高系统对城市生活污水污染物去除能力的研究,优化了复合垂直流渗滤系统.并且通过研究,探索了系统非生物作用与生物作用对氮的降解机制.结果表明,通过生物强化系统生活污水中COD的去除率由原来的74.7%提高到85.3%;对NH3-N的去除率由原来的28.7%提高到52.9%;对TN的去除率从31.0%提高到41.7%;系统对TP的去除率由30.9%提高到49.3%.球形填料通过提高系统的硝化活性,增加对氨氮的降解转化效率,同时生物量的大小,也是影响氨氮的降解转化效率的重要因素.系统对污水中氮的降解是以生物作用为主,氮转化以硝化效果较强,反硝化效果比较弱.  相似文献   

9.
随着生物技术在环境污染控制领域应用的兴起,遗传工程可以说是一项具有潜在应用前景的新技术。最近,马里兰大学化学与生化工程系的Coppella博士提出了处理有机磷废物的遗传工程学方法。他们从能降解有机磷的微生物如假单胞菌、黄杆菌中分离得到编码对硫磷水解酶的基因(opd),把opd基因克隆到Streptomyces质粒PIJ702上,形成修饰性质粒PRYE1;然后将质粒PRYE1转化到Streptomyces lividans寄生  相似文献   

10.
表面活性剂强化抽出处理含水层中DNAPL污染物的去除特征   总被引:1,自引:0,他引:1  
为明确表面活性剂强化抽出处理含水层中DNAPL污染物过程中表面活性剂的增强修复效果,及DNAPL自身理化性质和介质孔径的影响,利用数码图像分析技术对1,2-二氯乙烷和四氯乙烯2种DNAPL在石英砂填充的二维砂箱中的抽取迁移过程进行了实验模拟研究,并对抽出水样中DNAPL的浓度进行了测试分析。结果表明,实验条件下加入低浓度(0.18%)的十二烷基苯磺酸钠(SDBS)大幅提高了对弱透水层截留的2种DNAPL聚集体的抽出处理效率。1,2-二氯乙烷在该表面活性剂溶液中的表观溶解度远高于四氯乙烯,因此其短时间内的绝对去除率更高。SDBS强化抽出处理DNAPL的作用机理以增溶作用为主,而其增流作用使DNAPL迁移流动后分布面积增大,增加了与表面活性剂溶液接触的面积,对增溶作用起到促进效果。细粒介质中DNAPL迁移后的最大分布面积较大,因此体系中DNAPL的溶解速率较高。在DNAPL聚集体质量与水力梯度固定的条件下,油水界面张力越低,DNAPL的密度越大,DNAPL垂向迁移的风险就越大。本研究为修复工程中如何依据DNAPL种类与场地多孔介质的情况选择表面活性剂提供了参考。  相似文献   

11.
Remediation of waters contaminated with pentachlorophenol   总被引:14,自引:0,他引:14  
We describe a simple method of remediating waters contaminated with pentachlorophenol (PCP), which involves filtering the water through clean soil. The filtrate is contaminant free and no PCP can be extracted from the soil. If the soil it treated with dilute acid, the filtrate is still contaminant free but 28.7% of the PCP can be extracted from the contaminated soil. Irradiating the soil with microwave energy either destroys or binds the PCP to the soil irreversibly such that none can be extracted after long periods of time.  相似文献   

12.
Incineration and human health   总被引:1,自引:0,他引:1  
After pollutants from an incineration facility disperse into the air, some people close to the facility may be exposed directly through inhalation or indirectly through consumption of food or water contaminated by deposition of the pollutants from air to soil, vegetation, and water. For metals and other pollutants that are very persistent in the environment, the potential effects may extend well beyond the area close to the incinerator. Persistent pollutants can be carried long distances from their emission sources, go through various chemical and physical transformations, and pass numerous times through soil, water, or food.  相似文献   

13.
Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ13C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ13C of the soil can be explained by the δ13C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ13C in the atmospheric deposition accounts for 28.2 % of the δ13C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ13C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.  相似文献   

14.
冬季垃圾填埋场渗滤液回灌水量平衡的实验研究   总被引:4,自引:0,他引:4  
渗滤液回灌的水量平衡是垃圾填埋场渗滤液回灌处理法工程应用的关键问题之一。着重研究了冬季渗滤水回灌的水量平衡状况。结果表明,冬季回灌水量仍可通过土壤蒸发得到大量削减,径流量、土壤渗出 水与下渗水的比值大于春夏秋三季,平均蒸发量小于些三季。回灌条件下,土壤湿润度提高,蒸发量增大。  相似文献   

15.
Perchlorate is a stable anion that has been introduced into the environment through activities related to its production and use as a solid rocket propellant. Perchlorate is thought to transport through soils without being adsorbed; thus, for determination of perchlorate in soil, samples are typically extracted with water prior to analysis. The completeness of extraction depends on perchlorate existing as a free ion within the soil matrix. In this study, perchlorate extraction efficiency was evaluated with five soil types under two different oxygen states. For each soil, 30% (w/w) slurries were prepared and equilibrated under either oxic or anoxic conditions prior to spiking with a stock solution of sodium perchlorate, and the slurries were then maintained for 1-week or 1-month. At the end of the exposure, slurries were centrifuged and separated into aqueous and soil phases. After phase separation, the soil was washed first with deionized water and then with 50mM NaOH, producing second and third aqueous phases, respectively. Perchlorate concentrations in the three aqueous phases were determined using ion chromatography. The results obtained from this study suggest that matrix interference and signal suppression due to high conductivity have greater effects upon observed perchlorate concentrations by ion chromatography than does perchlorate interaction with soil. Thus, a single water extraction is sufficient for quantitative determination of perchlorate in soil.  相似文献   

16.
Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.  相似文献   

17.
Kay P  Blackwell PA  Boxall AB 《Chemosphere》2005,60(4):497-507
The environment may be exposed to veterinary medicines administered to livestock due to the application of organic fertilisers to land. For other groups of substances that are applied to agricultural land (e.g. pesticides), preferential flow in underdrained clay soils has been identified as an extremely important pathway by which pollution of surface waters can occur. Three soil column leaching experiments have therefore been carried out using a clay soil to investigate the fate of a range of antibiotics from the sulphonamide, tetracycline and macrolide groups. These column studies complemented a range of other experiments at the field and semi-field scales, as well as modelling studies which are being reported in separate papers. Each column study had a different objective. The first examined the effect of pig slurry on the mobility of antibiotics in clay loam soil. The second experiment investigated changes in soil water pH due to the application of slurry. The final experiment quantified the extent to which soil tillage prior to slurry application can reduce the leaching of antibiotic residues found in slurry. It was found that slurry had no impact on the leaching of oxytetracycline although soil water pH was affected significantly by slurry application. It was also shown that pre-tillage can substantially reduce the leaching of antibiotic residues through macroporous clay soils.  相似文献   

18.
Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different aspects.  相似文献   

19.
The use of organic amendments has been suggested as a method of controlling pesticide leaching through soils. The enarenados soils of the intensive horticulture of the Almeria province of southern Spain contain buried organic matter horizons above a soil layer amended with clay. This region is ideal for understanding the potential for and limitations of organic amendments in preventing pesticide pollution. This study measured the sorption and degradation potential of carbofuran in this soil system and the hydrological behaviour of the soil horizons. The sorption of carbofuran was controlled by the organic carbon content, the degradation was strongly pH-dependent and the acidic organic layer protected the sorbed carbofuran against degradation. Hydrologically, the soil system is dominated by ponding above an amended clay layer and by the presence of macropores that can transport water through this clay. A simple model is proposed on this basis and shows that although high levels of dissolved organic carbon can be released by buried organic horizons, the major control on re-release of sorbed pesticide is the potential for sorption hysteresis in this organic layer. A comparison of sorption and degradation data for carbamate insecticides used in the region with groundwater observations for these compounds shows that no amount of incorporated organic would protect against pollution from highly water-soluble compounds.  相似文献   

20.
Agricultural opportunities to mitigate greenhouse gas emissions   总被引:15,自引:0,他引:15  
Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号