首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   


2.
In recent years, there has been a marked increase in the amount of ambient air quality data collected near Marcellus Shale oil and gas development (OGD) sites. We integrated air measurement data from over 30 datasets totaling approximately 200 sampling locations nearby to Marcellus Shale development sites, focusing on 11 air pollutants that can be associated with OGD operations: fine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, toluene, xylenes, and hydrogen sulfide (H2S). We evaluated these data to determine whether there is evidence of community-level air quality impacts of potential health concern, making screening-level comparisons of air monitoring data with acute and chronic health-based air comparison values (HBACVs). Based on the available air monitoring data, we found that only a small fraction of measurements exceeded HBACVs, which is similar to findings from integrative air quality assessments for other shale gas plays. Therefore, the data indicate that air pollutant levels within the Marcellus Shale development region typically are below HBACV exceedance levels; however, the sporadic HBACV exceedances warrant further investigation to determine whether they may be related to specific site characteristics, or certain operations or sources. Like any air monitoring dataset, there is uncertainty as to how well the available Marcellus Shale air monitoring data characterize the range of potential exposures for people living nearby to OGD sites. Given the lesser amounts of air monitoring data available for locations within 1,000 feet of OGD sites as compared to locations between 0.2 and 1 miles, the presence of potential concentration hotspots cannot be ruled out. Additional air monitoring data, in particular more real-time data to further characterize short-term peak concentrations associated with episodic events, are needed to provide for more refined assessments of potential health risks from Marcellus Shale development.

Implications: While there is now a sizable amount of ambient air monitoring data collected nearby to OGD activities in the Marcellus Shale region, these data are currently scattered among different databases and studies. As part of an integrative assessment of Marcellus Shale air quality impacts, ambient air data are compiled for a subset of criteria air pollutants and hazardous air pollutants that have been associated with OGD activities, and compared to acute and chronic health-based air comparison values to help assess the air-related public health impacts of Marcellus Shale development.  相似文献   


3.
Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas.

Implications: In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal land managers as well as regulators in states heavy in oil and gas production as they consider control strategies to reduce the impact of development.  相似文献   


4.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   


5.
The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters.

Implications: Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.  相似文献   


6.
In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments.

In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries.

Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models.

Natural “interventions” - reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems – demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g., carbonaceous species, may cause harm, aiding interpretation of epidemiological studies.

Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer, and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the U.S. EPA rubric for judging possible causality of PM2.5. mass concentrations, be used to assess which PM2.5. species are most harmful to public health.

Implications: Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. “Natural intervention” studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.

A list of acronyms will be found at the end of the article.  相似文献   


7.
Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO2/CH4 sensor on board, the mobile platform was able to measure CO2 and CH4 emissions over two days at two different locations in the pond. Flux emission rates of CO2 and CH4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs.

Implications: The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.  相似文献   


8.
The Northern Colorado Front Range (NCFR) has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004, which has led to much debate over the sources of ozone precursors to the region, as this area is home to both the Denver, CO, metropolitan area and the Denver–Julesburg Basin, which has experienced rapid growth of oil and natural gas (O&NG) operations and associated emissions. Several recent studies have reported elevated levels of atmospheric volatile organic compounds (VOCs) as a result of O&NG emissions and the potential for significant ozone production from these emissions, despite implementation of stricter O&NG VOC emissions regulations in 2008. Approximately 88% of 1-hr elevated ozone events (>75 ppbv) occur during June–August, indicating that elevated ozone levels are driven by regional photochemistry. Analyses of surface ozone and wind observations from two sites, namely, South Boulder and the Boulder Atmospheric Observatory, both near Boulder, CO, show a preponderance of elevated ozone events associated with east-to-west airflow from regions with O&NG operations in the N-ESE, and a relatively minor contribution of transport from the Denver Metropolitan area to the SE-S. Transport from upwind areas associated with abundant O&NG operations accounts for on the order of 65% (mean for both sites) of 1-hr averaged elevated ozone levels, while the Denver urban corridor accounts for 9%. These correlations contribute to mounting evidence that air transport from areas with O&NG operation has a significant impact on ozone and air quality in the NCFR.

Implications: This article builds on several previous pieces of research that implied significant contributions from oil and natural gas emissions on ozone production in the Northern Colorado Front Range. By correlating increased ozone events with transport analyses we show that there is a high abundance of transport events with elevated ozone originating from the Denver–Julesburg oil and natural gas basin. These findings will help air quality regulators to better assess contributing sources to ozone production and in directing policies to curb ozone pollution in this region.  相似文献   


9.
Freight transportation activities are responsible for a large share of air pollution and greenhouse gas emissions in the United States. Various freight transportation modes have significantly different impacts on air quality and environmental sustainability, and this highlights the need for a better understanding of interregional freight shipment mode choices. This paper develops a binomial logit market share model to predict interregional freight modal share between truck and rail as a function of freight and shipment characteristics. This model can be used to estimate the impacts of various factors, such as oil price, on shippers’ mode choice decisions. A set of multiyear freight and geographical information databases was integrated to construct regression models for typical freight commodities. The atmospheric impact levels incurred by different freight modal choice decisions are analyzed to provide insights on the relationship among freight modal split, oil price change, and air quality.

Implications:

Freight transportation has become a major source of energy consumption and air pollution, and emissions rates vary significantly across different modes. Understanding freight shipment mode choice under various economic and engineering factors will help assess the environmental impacts of freight shipment systems at the national level. This paper develops a binomial logit model for two dominating modes (truck and rail) and shows how this model is incorporated into an environmental impact analysis. The framework will be useful to policy makers to assess the impacts of freight movements on air quality and public health and to mitigate those adverse impacts.  相似文献   


10.
A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver–Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods.

Implications: Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.  相似文献   


11.
Shale gas has become an important strategic energy source with considerable potential economic benefits and the potential to reduce greenhouse gas emissions in so far as it displaces coal use. However, there still exist environmental health risks caused by emissions from exploration and production activities. In the United States, states and localities have set different minimum setback policies to reduce the health risks corresponding to the emissions from these locations, but it is unclear whether these policies are sufficient. This study uses a Gaussian plume model to evaluate the probability of exposure exceedance from EPA concentration limits for PM2.5 at various locations around a generic wellsite in the Marcellus shale region. A set of meteorological data monitored at ten different stations across Marcellus shale gas region in Pennsylvania during 2015 serves as an input to this model. Results indicate that even though the current setback distance policy in Pennsylvania (500 ft. or 152.4 m) might be effective in some cases, exposure limit exceedance occurs frequently at this distance with higher than average emission rates and/or greater number of wells per wellpad. Setback distances should be 736 m to ensure compliance with the daily average concentration of PM2.5, and a function of the number of wells to comply with the annual average PM2.5 exposure standard.

Implications: The Marcellus Shale gas is known as a significant source of criteria pollutants and studies show that the current setback distance in Pennsylvania is not adequate to protect the residents from exceeding the established limits. Even an effective setback distance to meet the annual exposure limit may not be adequate to meet the daily limit. The probability of exceeding the annual limit increases with number of wells per site. We use a probabilistic dispersion model to introduce a technical basis to select appropriate setback distances.  相似文献   


12.
Oil and gas activities have occurred in the Bakken region of North Dakota and nearby states and provinces since the 1950s but began increasing rapidly around 2008 due to new extraction methods. Three receptor-based techniques were used to examine the potential impacts of oil and gas extraction activities on airborne particulate concentrations in Class I areas in and around the Bakken. This work was based on long-term measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network. Spatial and temporal patterns in measured concentrations were examined before and after 2008 to better characterize the influence of these activities. A multisite back-trajectory analysis and a receptor-based source apportionment model were used to estimate impacts. Findings suggest that recent Bakken oil and gas activities have led to an increase in regional fine (PM2.5—particles with aerodynamic diameters <2.5 µm) soil and elemental carbon (EC) concentrations, as well as coarse mass (CM = PM10–PM2.5). Influences on sulfate and nitrate concentrations were harder to discern due to the concurrent decline in regional emissions of precursors to these species from coal-fired electric generating stations. Impacts were largest at sites in North Dakota and Montana that are closest to the most recent drilling activity.

Implications: The increase in oil and gas activities in the Bakken region of North Dakota and surrounding areas has had a discernible impact on airborne particulate concentrations that impact visibility at protected sites in the region. However, the impact has been at least partially offset by a concurrent reduction in emissions from coal-fired electric generating stations. Continuing the recent reductions in flaring would likely be beneficial for the regional visual air quality.  相似文献   


13.
In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2–C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013–2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin.

Implications: This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.  相似文献   


14.
A new method has been developed for a direct and remote measurement of industrial flare combustion efficiency (CE). The method is based on a unique hyper-spectral or multi-spectral Infrared (IR) imager which provides a high frame rate, high spectral selectivity and high spatial resolution. The method can be deployed for short-term flare studies or for permanent installation providing real-time continuous flare CE monitoring.

In addition to the measurement of CE, the method also provides a measurement for level of smoke in the flare flame regardless of day or night. The measurements of both CE and smoke level provide the flare operator with a real-time tool to achieve “incipient smoke point” and optimize flare performance.

The feasibility of this method was first demonstrated in a bench scale test. The method was recently tested on full scale flares along with extractive sampling methods to validate the method. The full scale test included three types of flares – steam assisted, air assisted, and pressure assisted. Thirty-nine test runs were performed covering a CE range of approximately 60-100%. The results from the new method showed a strong agreement with the extractive methods (r2=0.9856 and average difference in CE measurement=0.5%).

Implications: Because industrial flares are operated in the open atmosphere, direct measurement of flare combustion efficiency (CE) has been a long-standing technological challenge. Currently flare operators do not have feedback in terms of flare CE and smoke level, and it is extremely difficult for them to optimize flare performance and reduce emissions. The new method reported in this paper could provide flare operators with real-time data for CE and smoke level so that flare operations can be optimized. In light of EPA’s focus on flare emissions and its new rules to reduce emissions from flares, this policy-relevant development in flare CE monitoring is brought to the attention of both the regulating and regulated communities.  相似文献   


15.
Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland (“Reykjavik haze”), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events.

Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured.

Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution.

Implications: Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and provides a unique perspective of the dust aerosol production from natural sources in the sub-Arctic Iceland. The amounts are staggering, and with this paper, it is clear that Icelandic dust sources need to be considered among major global dust sources. This paper presents the dust events directly affecting the air quality in the Arctic region.  相似文献   


16.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


17.
Polychlorinated biphenyls (PCBs) were widely used in industrial production due to the unique physical and chemical properties. As a kind of persistent organic pollutants, the PCBs would lead to environment pollution and cause serious problems for human health. Thus, they have been banned since the 1980s due to the environment pollution in the past years. Indoor air is the most direct and important environment medium to human beings; thus, the PCBs pollution research in indoor air is important for the protection of human health. This paper introduces the industrial application and potential harm of PCBs, summarizes the sampling, extracting, and analytical methods of environment monitoring, and compares the indoor air levels of urban areas with those of industrial areas in different countries according to various reports. This paper can provide a basic summary for PCBs pollution control in the indoor air environment.

Implications: The review of PCBs pollution in indoor air in China is still limited. In this paper, we introduce the industrial application and potential harm of PCBs, summarize the sampling, extracting, and analytical methods of environment monitoring, and compare the indoor air levels of urban areas with industrial areas in different countries according to various reports.  相似文献   


18.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


19.
In May 2018, the University of Denver repeated on-road optical remote sensing measurements at two locations in Lynwood, CA. Lynwood area vehicle tailpipe emissions were first surveyed in 1989 and 1991 because the area suffered from a large number of carbon monoxide (CO) air quality violations. These new measurements allow for the estimation of fuel-specific CO and total hydrocarbon (HC) emissions reductions, changes in the longevity of emission-control components, and the prevalence of high emitters in the current fleet. Since 1989 CO emissions decreased approximately factors of 10 (120 ± 8 to 12.3 ± 0.2 gCO/kg of fuel) and 20 (210 ± 8 to 10.4 ± 0.4 gCO/kg of fuel) at our I-710/Imperial Highway and Long Beach Blvd. sites, respectively. These reductions are also reflected in the local ambient air measurements. Tailpipe HC emissions have decreased by a factor of 25 (50 ± 4 to 2.1 ± 0.3 gHC/kg of fuel) since 1991 at the Long Beach Blvd. location. The decreases are so dramatic that the vast majority of vehicles now have HC measurements that are indistinguishable from zero. The decreases have increased the skewedness of the emissions distribution with the 99th percentile now responsible for more than 37% (CO) and 28% (HC) of the totals. Ammonia emissions collected in 2018 at both Lynwood locations peak with 20-year-old vehicles (1998 models), indicating long lifetimes for catalytic converters.

In 1989 and 1991, the on-road Lynwood fleets had significantly higher emissions than fleets observed in other locations within the South Coast Air Basin. The 2018 fleets now have means and emissions by model year that are consistent with those observed at other sites in Los Angeles and the U.S. This indicates that modern vehicle combustion management and after-treatment systems are achieving their goals regardless of community income levels.

Implications: Recent on-road vehicle emission measurements at two locations in the Lynwood, CA area, first visited in 1989, found significant fuel specific CO and HC emission reductions. CO emissions have decreased by a factor of 10 and 20 at each location and HC emissions have declined by a factor of 25. This has increased the skewedness in both species emissions distribution. The 2018 fleets have means and emissions by model year that are now consistent with those observed at other U.S. sites indicating that modern vehicle emissions control advancements are achieving their goals regardless of community income levels.  相似文献   


20.
To mitigate climate change, governments ranging from city to multi-national have adopted greenhouse gas (GHG) emissions reduction targets. While the location of GHG reductions does not affect their climate benefits, it can impact human health benefits associated with co-emitted pollutants. Here, an advanced modeling framework is used to explore how subnational level GHG targets influence air pollutant co-benefits from ground level ozone and fine particulate matter. Two carbon policy scenarios are analyzed, each reducing the same total amount of GHG emissions in the Northeast US: an economy-wide Cap and Trade (CAT) program reducing emissions from all sectors of the economy, and a Clean Energy Standard (CES) reducing emissions from the electricity sector only. Results suggest that a regional CES policy will cost about 10 times more than a CAT policy. Despite having the same regional targets in the Northeast, carbon leakage to non-capped regions varies between policies. Consequently, a regional CAT policy will result in national carbon reductions that are over six times greater than the carbon reduced by the CES in 2030. Monetized regional human health benefits of the CAT and CES policies are 844% and 185% of the costs of each policy, respectively. Benefits for both policies are thus estimated to exceed their costs in the Northeast US. The estimated value of human health co-benefits associated with air pollution reductions for the CES scenario is two times that of the CAT scenario.

Implications: In this research, an advanced modeling framework is used to determine the potential impacts of regional carbon policies on air pollution co-benefits associated with ground level ozone and fine particulate matter. Study results show that spatially heterogeneous GHG policies have the potential to create areas of air pollution dis-benefit. It is also shown that monetized human health benefits within the area covered by policy may be larger than the model estimated cost of the policy. These findings are of particular interest both as U.S. states work to develop plans to meet state-level carbon emissions reduction targets set by the EPA through the Clean Power Plan, and in the absence of comprehensive national carbon policy.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号