首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 546 毫秒
1.
目的研究阳极氧化膜破损的航空铝合金试件在实验室加速腐蚀条件下的腐蚀行为和疲劳性能退化规律,并和阳极氧化膜完好的试件进行对比。方法以不同表面状态的2024-T3铝合金试件为研究对象,进行不同时长的实验室加速腐蚀试验和与加速腐蚀后的DFR试验。通过观察腐蚀形貌,测量腐蚀坑深度和孔蚀率来观测腐蚀行为,通过计算腐蚀后的DFR来研究DFR退化规律。结果阳极氧化膜完好、破损的2024-T3铝合金试件分别在加速腐蚀180、36 h后出现点蚀坑,平均点蚀坑深度与加速腐蚀时间符合幂函数关系。试件在实验室加速腐蚀条件下,DFR的退化规律符合指数函数关系。结论与阳极氧化膜完好试件相比,阳极氧化膜破损会导致2024-T3铝合金试件的耐腐蚀性降低,加速试件疲劳性能退化的速率。  相似文献   

2.
通过金相分析、扫描电子显微镜(SEM)观察和能谱分析等检测方法,对某铝合金/硫酸阳极氧化膜眼镜架在汗液环境中的腐蚀失效行为进行了失效分析,结果表明:铝合金/酸阳极氧化膜在汗液环境中发生了严重的腐蚀,腐蚀形式以点蚀为主,局部出现裂纹,腐蚀均发生在阳极氧化膜完整性发生缺陷的部位,铝合金基体在晶界上优先发生腐蚀,点蚀坑生长和裂纹扩展均沿晶界进行;阳极氧化膜完整的区域,阳极氧化膜腐蚀不明显.  相似文献   

3.
目的研究不同腐蚀环境条件下,封闭处理对铝合金硬质阳极氧化膜防护性能的影响规律。方法采用中性盐雾、酸性盐雾试验方法进行加速试验,对无划痕试样腐蚀外观和附着力以及有划痕试样的腐蚀形貌等进行检测和考核分析。结果获得了4种铝合金材料硬质阳极氧化膜层在不同试验环境条件下的防护性能、腐蚀失效、附着力变化以及抗腐蚀扩展性能等试验数据。结论封闭处理能够提高铝合金硬质阳极氧化膜层的耐蚀性,改善硬质阳极氧化膜层的耐腐蚀扩展性,同时有助于解决硬质阳极氧化膜层与有机涂层附着力降低的问题。  相似文献   

4.
目的研究不同腐蚀环境条件下铝合金阳极氧化膜层的防护作用及失效规律。方法采用中性盐雾、酸性盐雾试验方法进行加速试验,对无划线试样腐蚀外观和附着力以及有划线试样的腐蚀形貌等进行检测和考核分析。结果获得了4种铝合金材料阳极氧化膜层在不同试验环境条件下的防护性能、腐蚀失效、附着力变化以及抗腐蚀扩展性能等试验数据。结论铝合金材料类型对未封闭处理的阳极氧化膜的耐腐蚀扩展性能影响明显。封闭处理能够提高铝合金阳极氧化膜的综合防护性能。  相似文献   

5.
讨论了TA15钛合金与铝合金和结构钢接触后,在海南万宁大气试验站大气暴露的试验结果。3年的大气暴露试验显示,在海洋性大气环境下,2B06铝合金、16CrSiN i钢和30CrMnSiA钢无论与TA15钛合金接触与否,腐蚀都很严重,力学性能明显下降;对2B06铝合金进行阳极氧化,对16CrSiN i钢和30CrMnSiA钢进行氯化铵镀镉,可在一定程度上减缓腐蚀,但经过一定时间大气暴露,无论与TA15钛合金接触与否,都产生了严重腐蚀,力学性能明显下降;对2B06铝合金进行阳极氧化,对16CrSiN i钢和30CrMnSiA钢进行氯化铵镀镉,再喷涂1号航空底漆进行防护,可有效防止接触腐蚀。  相似文献   

6.
铝合金大气腐蚀行为及其防腐措施研究进展   总被引:17,自引:6,他引:11  
综述了铝合金的大气腐蚀机理和大气主要环境因素对铝合金的大气腐蚀的影响。重点介绍了近年来所采用的对环境无害的铝合金无铬防腐蚀处理方法(激光熔覆法、溶胶-凝胶法、聚合物防腐蚀膜等)及其发展前景。  相似文献   

7.
TC4钛合金厚板电偶腐蚀与防护研究   总被引:4,自引:0,他引:4  
目的研究TC4钛合金厚板与铝合金、钢之间发生电偶腐蚀的敏感性。方法通过测定TC4钛合金厚板与铝合金、钢组成的电偶对的电偶电流方法,研究TC4钛合金厚板与上述异种材料之间发生电偶腐蚀的敏感性。结果 TC4钛合金厚板与铝合金、钢接触时极易发生电偶腐蚀,不能直接接触使用,必须采取有效的防护措施。对钛合金和铝合金进行阳极氧化处理,可降低电偶腐蚀敏感性;对钛合金进行阳极氧化处理,同时对钢进行电镀镉-钛处理可以在一定程度上降低电偶腐蚀敏感性。结论 TC4钛合金厚板与铝合金及钢的电偶腐蚀敏感性高,表面处理可以有效降低异种材料的电偶腐蚀敏感性。  相似文献   

8.
综述了铝合金的大气腐蚀机理和大气主要环境因素对铝合金的大气腐蚀的影响。重点介绍了近年此捎玫亩曰肪澄藓Φ穆梁辖鹞薷醴栏创矸椒ǎす馊鄹卜ā⑷芙?凝胶法、聚合物防腐蚀膜等)及其发展前景。  相似文献   

9.
变电站常用金属的大气腐蚀行为及其防护   总被引:4,自引:3,他引:1  
综述了变电站常用金属的腐蚀类型及研究现状。对于不锈钢、铝及铝合金,海洋大气中的Cl~-引起钝化膜破裂,当其浓度超过临界浓度[Cl~-]_(pit),发生点蚀。对于铜及铜合金,工业大气中的SO~2腐蚀作用极为明显。对于锌及锌合金,Cl~-增强表面薄液膜的导电性从而加剧其腐蚀。因此,高润湿时间和高Cl~-是滨海变电站大气腐蚀的主要原因。  相似文献   

10.
目的 研究阳极化处理对SP700钛合金与2A12铝合金电偶对的腐蚀行为和机理的影响。方法 采用电化学极化曲线测试法对阳极氧化处理前后的SP700钛合金的耐蚀性能进行初步研究,并以此作为边界条件,采用有限元数值模拟的方法,对不同状态的SP700钛合金与2A12铝合金组成的偶对电偶腐蚀情况进行模拟计算。同时,开展电偶对的电偶腐蚀试验,对模拟结果进行验证。此外,通过对电偶腐蚀后的试件表面微观形貌进行表征,进一步分析不同电偶对的腐蚀规律差异。结果 SP700钛合金阳极氧化前的自腐蚀电位为‒283 mV,腐蚀电流密度为6.164×10‒9 A/cm2;氧化后的自腐蚀电位为‒270 mV,腐蚀电流密度为8.589×10‒10 A/cm2。SP700钛合金阳极氧化前与2A12铝合金的试验和仿真平均电偶电流密度分别为6.81、6.76 μA/cm2;SP700钛合金阳极氧化后与2A12铝合金的试验和仿真平均电偶电流密度分别为2.58、2.54 μA/cm2。结论 SP700钛合金表面阳极化处理可有效降低与铝合金之间电偶腐蚀的敏感性。  相似文献   

11.
目的研究7B04铝合金硫酸阳极化层环境作用下的失效行为,分析单独盐雾试验和环境谱作用下阳极化层的损伤行为和影响因素。方法通过中性盐雾试验和环境谱周期性试验(盐雾试验+温度试验)研究了硫酸阳极化层在不同腐蚀时间或不同腐蚀周期下的腐蚀损伤变化过程,并采用体视显微镜和扫描电子显微镜(SEM)观察了不同腐蚀时间下或不同腐蚀周期下的表面形貌,结合有限元方法研究了阳极化层与铝合金基体热膨胀系数不匹配引起的热应力,定量分析了热应力对阳极化层失效行为的影响。结果经历中性盐雾试验和环境谱试验的硫酸阳极化层损伤失效现象是不一样的,中性盐雾试验中硫酸阳极化层主要呈鼓起开裂失效,而环境谱试验中硫酸阳极化层以开裂剥落失效为主。结论中性盐雾试验中硫酸阳极化层主要是腐蚀介质通过表面微孔进入基体,导致基体腐蚀阳极化层鼓起,而环境谱试验因温度作用产生的热应力引起了硫酸阳极化层的开裂,形成了腐蚀介质进入基体的通道,引起阳极化层的剥落。  相似文献   

12.
目的 针对不同地区铝合金大气腐蚀差异性和样本数据利用不充分的问题,构建精度更高的铝合金大气腐蚀模型,研究铝合金在不同环境中的大气腐蚀规律。方法 基于多层线性模型,构建具备层次结构的腐蚀率模型。以某型号铝合金腐蚀数据为研究对象,逐步建立零模型、随机系数回归模型、完整模型探究大气腐蚀规律,并进行预测评估。结果 通过交叉验证进行模型评估,多层线性模型(MSE=0.001 3)优于幂函数回归(MSE=0.005 5),远优于线性回归(MSE=0.031 6),模型预测精度提升。多层线性模型能有效分解总方差,增强了模型的可解释性。结论 多层线性模型有效结合铝合金腐蚀数据区域差异性特征,能表征大气腐蚀规律,具有一定的实用价值。  相似文献   

13.
7B04铝合金海洋性大气腐蚀研究   总被引:5,自引:3,他引:2  
通过在青岛和海南开展的7B04铝合金户外大气暴露试验,利用失重分析、形貌观察、断面分析和电化学交流阻抗谱等研究了7B04铝合金在海洋性大气环境中的腐蚀动力学规律和腐蚀特征。结果表明,在青岛和海南等海洋性大气环境中,7B04铝合金腐蚀初期以点蚀形式萌生,随后向均匀腐蚀发展;腐蚀过程均经历了腐蚀速率由高到低的过程,且腐蚀失重与时间的关系均可用幂函数显著回归;电化学阻抗谱分析表明当腐蚀产物足够厚时,7B04铝合金海洋性大气腐蚀的电化学过程由侵蚀性离子的扩散步骤来控制。  相似文献   

14.
目的 研究某岛礁不同海洋区带环境中5083铝合金的腐蚀规律。方法 在某岛礁进行海洋多区带腐蚀试验,利用表面微观形貌观测、腐蚀产物分析、质量损失测试及点蚀深度测量等手段,对比分析铝合金在不同海洋区带中的腐蚀形貌、腐蚀速率和点蚀深度。结果 5083铝合金在某岛礁海洋全浸区带环境中的腐蚀速率最大,大气区带中的腐蚀速率最小,在潮差区带的腐蚀速率介于二者之间。试样在海洋不同区带主要发生局部腐蚀,大气区试样的最大点蚀深度最大,而潮差区试样的最大点蚀深度最小。在不同海洋区带,铝合金腐蚀产物和附着物的混合物中均含有钙元素,大气区钙元素含量远低于潮差区和全浸区,潮差区和全浸区铝合金表面的腐蚀产物和附着物混合物中主要含有CaCO3、CaSiO3和Al2O3。结论 不同海洋区带环境中,5083铝合金的腐蚀速率差别较大,潮差区和全浸区材料表面附着大量污损生物和矿物质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号