首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commonly used method of measuring enteric methane (CH4) emissions from ruminants is the SF6 tracer technique that measures respired and eructated CH4. However, within the animal, a small proportion of CH4 is produced post-ruminally and some of this may escape through the rectum. The comparison of emissions using a chamber technique that measures all enteric CH4 losses, and the SF6 tracer technique, could give some insight into the magnitude of post-ruminal emission. The objective of our study was to assess the precision and accuracy of the SF6 tracer technique against a chamber technique for cattle fed a range of diets. Using a repeated-measures design, eight beef heifers were offered a high grain or high forage diet for ad libitum or restricted (65% of ad libitum) feed intake to vary the site of digestion within the gastrointestinal tract (n = 24). The SF6 tracer technique underestimated CH4 emissions on average by 4% relative to the chamber technique. This difference was not significant (P > 0.05) and suggests low post-ruminal CH4 emissions. There was a trend for greater accuracy and precision of the SF6 tracer technique when used with cattle fed a high forage diet at a restricted level of intake. The high forage diet corresponds to the conditions of cattle grazing pasture, suggesting the SF6 tracer technique is most reliable for the grazing system.  相似文献   

2.
There is a need to know whole-farm methane (CH(4)) emissions since confined animal facilities such as beef cattle feedlots and dairy farms are emission "hot spots" in the landscape. However, measurements of whole-farm CH(4) emissions can differ between farms because of differences in contributing sources such as manure handling, number of lactating and nonlactating cows, and diet. Such differences may limit the usefulness of whole-farm emissions for national inventories and mitigation purposes unless the variance between farms is taken into account or a large number of farms can be examined. Our study describes the application of a dispersion model used in conjunction with field measurements of CH(4) concentration and stability of the air to calculate whole-farm emissions of CH(4) from three dairy farms in Alberta, Canada, during three sequential campaigns conducted in November 2004 and May and July 2005. The dairy farms ranged in herd size from 208 to 351 cows (102 to 196 lactating cows) and had different manure handling operations. The results indicate that the average CH(4) emission per cow (mixture of lactating and nonlactating) from the three dairy farms was 336 g d(-1), which was reduced to 271 g d(-1) when the emission (estimated) from the manure storage was removed. Further separation of source strength yielded an average CH(4) (enteric) emission of 363 g d(-1) for a lactating cow. The estimated CH(4) emission intensities were approximately 15 g CH(4) kg(-1) dry matter intake and 16.7 L CH(4) L(-1) of milk produced. The approach of understanding the farm-to-farm differences in CH(4) emissions as affected by diet, animal type, and manure management is essential when utilizing whole-farm emission measurements for mitigation and inventory applications.  相似文献   

3.
Fermentation in the rumen of cattle produces methane (CH4). Methane may play a role in global warming scenarios. The linking of grazing management strategies to more efficient beef production while reducing the CH4 emitted by beef cattle is important. The sulfur hexafluoride (SF6) tracer technique was used to determine the effects of best management practices (BMP) grazing compared with continuous grazing on CH4 production in several Louisiana forages during 1996-1998. Cows and heifers (Bos taurus) grazed common bermudagrass [Cynodon dactylon (L.) Pers.], bahiagrass (Paspalum notatum Flugge), and ryegrass (Lolium multiflorum Lam.) pastures and were wintered on bahiagrass hay with supplements of protein molasses blocks (PMB), cottonseed meal and corn (CSMC), urea and corn (URC), or limited ryegrass grazing (LRG). Daily CH4 emissions were between 89 and 180 g d(-1) for young growing heifers and 165 to 294 g d(-1) for mature Simbrah cows. Heifers on "ad lib" ryegrass in March and April produced only one-tenth the CH4 per kg of gain as heifers on LRG of 1 h. Using BMP significantly reduced the emission of CH4 per unit of animal weight gain. Management-intensive grazing (MIG) is a BMP that offers the potential for more efficient utilization of grazed forage crops via controlled rotational grazing and more efficient conversion of forage into meat and milk. Projected CH4 annual emissions in cows reflect a 22% reduction from BMP when compared with continuous grazing in this study. With the BMP application of MIG, less methane was produced per kilogram of beef gain.  相似文献   

4.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

5.
Gas emissions were determined for dairy cows fed three diets formulated to represent feed ingredients typical of the Midwest, South, or West regions of the United States. Dairy cows were housed and monitored in 12 environmentally controlled rooms (4 cows diet). Two experiments were performed, representing two lactation stages (initial days in milk were 115 ± 39 d in Stage 1 and 216 ± 48 d in Stage 2). The results demonstrated that the combination of different dietary ingredients resulted in different gas emissions while maintaining similar dry matter intake (DMI) and milk yield (MY). Diet effect on ammonia (NH) emissions was more prominent in Stage 1. During Stage 1, cows fed the Midwest diet had the highest daily NH emission, corresponding to the highest crude protein (CP) concentration among the three regions. The differences in NH emissions (39.0%) were much larger than the percent difference in CP concentrations between diets (6.8%). Differences in N intake, N excretion, or milk urea N alone may not serve as a strong indicator of the potential to reduce NH emissions. Lower emissions of methane (CH) per unit DMI or per unit MY were observed for cows offered the South diet during Stage 1 as compared with that from cows offered the Midwest or West diets. No diet effect was observed for hydrogen sulfide (HS) emission per unit S intake, nor for nitrous oxide (NO) emission. The measured NH and CH emissions were comparable, but the NO emissions were much higher than those reported for tie-stall dairy barns in the literature.  相似文献   

6.
Estimates of enteric methane (CH4) emissions from ruminants are typically measured by confining animals in large chambers, using head hoods or masks, or by a ratiometric technique involving sampling respired air of the animal. These techniques are not appropriate to evaluate large-scale farm emissions and the variability between farms that may be partly attributed to different farm management. This study describes the application of an inverse-dispersion technique to calculate farm emissions in a controlled tracer-release experiment. Our study was conducted at a commercial dairy farm in southern Alberta, Canada (total of 321 cattle, including 152 lactating dairy cows). Sulfur hexafluoride (SF6) and CH4 were released from 10 outlet locations (barn and open pens) using mass-flow controllers. A Lagrangian stochastic (LS) dispersion model was then used to infer farm emissions from downwind gas concentrations. Concentrations of SF6 and CH4 were measured by gas chromatography analysis and open path lasers, respectively. Wind statistics were measured with a three-dimensional sonic anemometer. Comparing the inferred emissions with the known release rate showed we recovered 86% of the released CH4 and 100% of the released SF6. The location of the concentration observations downwind of the farm was critically important to the success of this technique.  相似文献   

7.
Greenhouse gas emissions during cattle feedlot manure composting   总被引:11,自引:0,他引:11  
The emission of greenhouse gases (GHG) during feedlot manure composting reduces the agronomic value of the final compost and increases the greenhouse effect. A study was conducted to determine whether GHG emissions are affected by composting method. Feedlot cattle manure was composted with two aeration methods--passive (no turning) and active (turned six times). Carbon lost in the forms of CO2 and CH4 was 73.8 and 6.3 kg C Mg-1 manure for the passive aeration treatment and 168.0 and 8.1 kg C Mg-1 manure for the active treatment. The N loss in the form of N2O was 0.11 and 0.19 kg N Mg-1 manure for the passive and active treatments. Fuel consumption to turn and maintain the windrow added a further 4.4 kg C Mg-1 manure for the active aeration treatment. Since CH4 and N2O are 21 and 310 times more harmful than CO2 in their global warming effect, the total GHG emission expressed as CO2-C equivalent was 240.2 and 401.4 kg C Mg-1 manure for passive and active aeration. The lower emission associated with the passive treatment was mainly due to the incomplete decomposition of manure and a lower gas diffusion rate. In addition, turning affected N transformation and transport in the window profile, which contributed to higher N2O emissions for the active aeration treatment. Gas diffusion is an important factor controlling GHG emissions. Higher GHG concentrations in compost windrows do not necessarily mean higher production or emission rates.  相似文献   

8.
There are approximately 2.5 million dairy cows in California. Emission inventories list dairy cows and their manure as the major source of regional air pollutants, but data on their actual emissions remain sparse, particularly for smog-forming volatile organic compounds (VOCs) and greenhouse gases (GHGs). We report measurements of alcohols, volatile fatty acids, phenols, and methane (CH4) emitted from nonlactating (dry) and lactating dairy cows and their manure under controlled conditions. The experiment was conducted in an environmental chamber that simulates commercial concrete-floored freestall cow housing conditions. The fluxes of methanol, ethanol, and CH4 were measured from cows and/or their fresh manure. The average estimated methanol and ethanol emissions were 0.33 and 0.51 g cow(-1) h(-1) from dry cows and manure and 0.7 and 1.27 g cow(-1) h(-1) from lactating cows and manure, respectively. Both alcohols increased over time, coinciding with increasing accumulation of manure on the chamber floor. Volatile fatty acids and phenols were emitted at concentrations close to their detection limit. Average estimated CH4 emissions were predominantly associated with enteric fermentation from cows rather than manure and were 12.35 and 18.23 g cow(-1) h(-1) for dry and lactating cows, respectively. Lactating cows produced considerably more gaseous VOCs and GHGs emissions than dry cows (P < 0.001). Dairy cows and fresh manure have the potential to emit considerable amounts of alcohols and CH4 and research is needed to determine effective mitigation.  相似文献   

9.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

10.
The wetlands play an important role in carbon storage, especially at high latitudes, at which they store nearly one-third of global soil carbons. However, few studies have investigated the emissions of CO(2), CH(4) and N(2)O in the long-term, especially effects of freeze-thaw cycles on these gases emissions in freshwater marsh ecosystems. In this paper, we collected greenhouse gas emission data from a freshwater marsh area in China for 4 years, evaluated their release variables and speculated on their potential atmospheric impact. For this paper, we report on the CO(2), CH(4) and N(2)O emission rates recorded from June 2002 to November 2005 in the Sanjiang Plain of northeast China. We measured their interannual variations and fluctuations, as well as factors affecting their emissions, and estimated their regulation and freeze-thaw cycle impacts. Our results revealed obvious CO(2) and CH(4) emission fluctuations during the winter months, and during the freeze-thaw cycle, and a strong interannual variation during the growing season. Overall, we documented a close relationship between the CO(2) and CH(4) emissions, implicating some regulatory commonality. We determined that the marsh was a N(2)O sink during the winter, but a significant source of N(2)O during the freeze-thaw cycle as the temperature increased, especially in early summer. During the thaw-freeze period, the N(2)O levels were positively correlated with the water depth. Additionally, water depth greatly governed the interannual variation of the N(2)O emissions from the marshes during the thaw-freeze period.  相似文献   

11.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

12.
Potential environmental benefits of ionophores in ruminant diets   总被引:3,自引:0,他引:3  
A concern of the USEPA is the volatilization of NH3 from animal manure and CH4 produced from ruminal fermentation. Excess N in the environment has been associated with adverse effects on human health, and CH4 and N2O emissions are sources of greenhouse gases. The objectives of this paper are to summarize and quantify the benefits of ionophores, principally monensin, in decreasing NH3 and CH4 emissions to the environment and reducing resource utilization in cattle (Bos spp.) production. The data indicate that monensin in the diets of ruminants may decrease protein degradation in the rumen and may increase feed protein utilization by an average of 3.5 percentage units. These changes would have an effect in reducing N losses and decreasing fecal N and the amount of protein that must be fed to meet animal requirements. Additionally, CH4 is produced by enteric fermentation in ruminants, which is responsible for about 33 to 39% of CH4 emissions from agriculture. Ionophores can reduce CH4 production by 25% and decrease feed intake by 4% without affecting animal performance. The inclusion of monensin in beef and dairy cattle diets may benefit air quality by reducing CH4 and N emissions and water quality by reducing N in manure, which can potentially leave the farm through leaching into ground water and through runoff into surface water.  相似文献   

13.
The potential atmospheric impact of constructed wetlands (CWs) should be examined as there is a worldwide increase in the development of these systems. Fluxes of N(2)O, CH(4), and CO(2) have been measured from CWs in Estonia, Finland, Norway, and Poland during winter and summer in horizontal and vertical subsurface flow (HSSF and VSSF), free surface water (FSW), and overland and groundwater flow (OGF) wetlands. The fluxes of N(2)O-N, CH(4)-C, and CO(2)-C ranged from -2.1 to 1000, -32 to 38 000, and -840 to 93 000 mg m(-2) d(-1), respectively. Emissions of N(2)O and CH(4) were significantly higher during summer than during winter. The VSSF wetlands had the highest fluxes of N(2)O during both summer and winter. Methane emissions were highest from the FSW wetlands during wintertime. In the HSSF wetlands, the emissions of N(2)O and CH(4) were in general highest in the inlet section. The vegetated ponds in the FSW wetlands released more N(2)O than the nonvegetated ponds. The global warming potential (GWP), summarizing the mean N(2)O and CH(4) emissions, ranged from 5700 to 26000 and 830 to 5100 mg CO(2) equivalents m(-2) d(-1) for the four CW types in summer and winter, respectively. The wintertime GWP was 8.5 to 89.5% of the corresponding summertime GWP, which highlights the importance of the cold season in the annual greenhouse gas release from north temperate and boreal CWs. However, due to their generally small area North European CWs were suggested to represent only a minor source for atmospheric N(2)O and CH(4).  相似文献   

14.
Composting may be a viable on-farm option for disposal of cattle carcasses. This study investigated greenhouse gas emissions during co-composting of calf mortalities with manure. Windrows were constructed that contained manure + straw (control compost [CK]) or manure + straw + calf mortalities (CM) using two technologies: a tractor-mounted front-end loader or a shredder bucket. Composting lasted 289 d. The windrows were turned twice (on Days 72 and 190), using the same technology used in their creation. Turning technology had no effect on greenhouse gas emissions or the properties of the final compost. The CO2 (75.2 g d(-1) m(-2)), CH4 (2.503 g d(-1) m(-2)), and N2O (0.370 g d(-1) m(-2)) emissions were higher (p < 0.05) in CM than in CK (25.7, 0.094, and 0.076 g d(-1) m(-2) for CO2, CH4, and N2O, respectively), which reflected differences in materials used to construct the compost windrows and therefore their total C and total N contents. The final CM compost had higher (p < 0.05) total N, total C, and mineral N content (NO3*+ NO2* + NH4+) than did CK compost and therefore has greater agronomic value as a fertilizer.  相似文献   

15.
Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in The Netherlands. Lateral nitrate loading rates were high, up to 470 g N m(-2) yr(-1). Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha(-1) yr(-1)) compared with the grassland buffer zone (2-4 kg N ha(-1) yr(-1)), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs.  相似文献   

16.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

17.
Storage of cattle slurry leads to emissions of methane (CH(4)), nitrous oxide (N(2)O), ammonia (NH(3)), and carbon dioxide (CO(2)). On dairy farms, winter is the most critical period in terms of slurry storage due to cattle housing and slurry field application prohibition. Slurry treatment by separation results in reduced slurry dry matter content and has considerable potential to reduce gaseous emissions. Therefore, the efficiency of slurry separation in reducing gaseous emissions during winter storage was investigated in a laboratory study. Four slurry fractions were obtained: a solid and a liquid fraction by screw press separation (SPS) and a supernatant and a sediment fraction by chemically enhanced settling of the liquid fraction. Untreated slurry and the separated fractions were stored in plastic barrels for 48 d under winter conditions, and gaseous emissions were measured. Screw press separation resulted in an increase of CO(2) (650%) and N(2)O (1240%) emissions due to high releases observed from the solid fraction, but this increase was tempered by using the combined separation process (CSP). The CSP resulted in a reduction of CH(4) emissions ( approximately 50%), even though high emissions of CH(4) (46% of soluble C) were observed from the solid fraction during the first 6 d of storage. Screw press separation increased NH(3) emissions by 35%, but this was reduced to 15% using the CSP. During winter storage greenhouse gas emissions from all treatments were mainly in the form of CH(4) and were reduced by 30 and 40% using SPS and CSP, respectively.  相似文献   

18.
Livestock manure is a significant source of ammonia (NH3) emissions. In the atmosphere, NH3 is a precursor to the formation of fine aerosols that contribute to poor air quality associated with human health. Other environmental issues result when NH3 is deposited to land and water. Our study documented the quantity of NH3 emitted from a feedlot housing growing beef cattle. The study was conducted between June and October 2006 at a feedlot with a one-time capacity of 22,500 cattle located in southern Alberta, Canada. A backward Lagrangian stochastic (bLS) inverse-dispersion technique was used to calculate NH3 emissions, based on measurements of NH3 concentration (open-path laser) and wind (sonic anemometer) taken above the interior of the feedlot. There was an average of 3146 kg NH3 d(-1) lost from the entire feedlot, equivalent to 84 microg NH3 m(-2) s(-1) or 140 g NH3 head(-1) d(-1). The NH3 emissions correlated with sensible heat flux (r2 = 0.84) and to a lesser extent the wind speed (r2 = 0.56). There was also evidence that rain suppressed the NH3 emission. Quantifying NH3 emission and dispersion from farms is essential to show the impact of farm management on reducing NH3-related environmental issues.  相似文献   

19.
Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer.  相似文献   

20.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号