首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The capacity to reach lower bounds for extraction of pollutants from wastewater by four floating aquatic macrophytes--water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), salvinia (Salvinia rotundifolia), and water primroses (Ludvigia palustris)--is investigated. It is shown that the following lower bounds can be established for wastewater purification with water hyacinth: biochemical oxygen demand (BOD), 1.3 mg/L; chemical oxygen demand (COD), 11.3 mg/L; total suspended solids (TSS), 0.5 mg/L; turbidity, 0.7 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.4 mg/L. Also, the following lower bounds can be established for wastewater purification with water lettuce: BOD, 1.8 mg/L; COD, 12.5 mg/L; TSS, 0.5 mg/L; turbidity, 0.9 NTU; ammonia, 0.2 mg/L; and phosphorus, 1.6 mg/L. These lower bounds were reached in 11- to 17-day experiments that were performed on diluted wastewater with reduced initial contents of the tested water quality indicators. As expected, water hyacinth exhibited the highest rates and levels of pollutant removal, thereby producing the best lower bounds of the water quality indicators. Given the initially low levels, BOD was further reduced by 86.3%, COD by 66.6%, ammonia by 97.8%, and phosphorus by 65.0% after 11 days of a batch experiment. The capacity of water plants to purify dilute wastewater streams opens new options for their application in the water treatment industry.  相似文献   

2.
The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow diversion and temporary storage to prevent process upsets.  相似文献   

3.
The 5 days at 20 degrees C biochemical oxygen demand (BOD5) is an important parameter for monitoring organic pollution in water and assessing the biotreatability of wastewater. Moreover, BOD5 is used for wastewater treatment plant discharge consents and other water pollution control purposes. However, the traditional bioassay method for estimating the BOD5 involves the incubation of sample water for 5 days. It follows that BOD5 is not available for real-time decisionmaking and process control purposes. On the other hand, previous efforts to solve this problem by developing more rapid biosensors had limited success. This paper reports on the development of Kohonen self-organizing map (KSOM)-based software sensors for the rapid prediction of BOD5. The findings indicate that the KSOM-based BOD5 estimates were in good agreement with those measured using the conventional bioassay method. This offers significant potential for more timely intervention and cost savings during problem diagnosis in water and wastewater treatment processes.  相似文献   

4.
Batch respirometric tests have many advantages over the conventional biochemical oxygen demand (BOD) method for analysis of wastewaters, including the use of nondiluted samples, a more rapid exertion of oxygen demand, and reduced sample preparation time. The headspace biochemical oxygen demand (HBOD) test can be used to obtain oxygen demands in 2 or 3 days that can predict 5-day biochemical oxygen demand (BOD5) results. The main disadvantage of the HBOD and other respirometric tests has been the lack of a simple and direct method to measure oxygen concentrations in the gas phase. The recent commercial production of a new type of fiber optic oxygen probe, however, provides a method to eliminate this disadvantage. This fiber optic probe, referred to here as the HBOD probe, was tested to see if it could be used in HBOD tests. Gas-phase oxygen measurements made with the HBOD probe took only a few seconds and were not significantly different from those made using a gas chromatograph (t test: n = 15, R2 = 0.9995, p < 0.001). In field tests using the HBOD probe procedure, the probe greatly reduced sample analysis time compared with previous HBOD and BOD protocols and produced more precise results than the BOD test for wastewater samples from two treatment plants (University Area Joint Authority [UAJA] Wastewater Treatment Plant in University Park, Pennsylvania, and The Pennsylvania State University [PSU] Wastewater Treatment Plant in University Park). Headspace biochemical oxygen demand measurements on UAJA primary clarifier effluent were 59.9 +/- 2.4% after 2 days (HBOD2) and 73.0 +/- 3.1% after 3 days (HBOD) of BOD, values, indicating that BOD5 values could be predicted by multiplying HBOD2 values by 1.67 +/- 0.07 or HBOD3 by 1.37 +/- 0.06. Similarly, tests using PSU wastewater samples could be used to provide BOD5 estimates by multiplying the HBOD2 by 1.24 +/- 0.04 or by multiplying the HBOD3 by 0.97 +/- 0.03. These results indicate that the HBOD fiber optic probe can be used to obtain reliable oxygen demands in batch respirometric tests such as the HBOD test.  相似文献   

5.
Treatment of domestic wastewater by an hydroponic NFT system   总被引:11,自引:0,他引:11  
The objectives in this work were to investigate a conceptual layout for an inexpensive and simple system that would treat primary municipal wastewater to discharge standards. A commercial hydroponic system was adapted for this study and the wastewater was used to irrigate Datura innoxia plants. Influent and effluent samples were collected once a month for six months and analysed to determine the various parameters relating to the water quality. The legal discharge levels for total suspended, biochemical oxygen demand and chemical oxygen demand were reached with the plant system after 24 h of wastewater treatment. Total nitrogen and total phosphorus reduction were also obtained. NH4(+)-N was reduced by 93% with nitrification proving to be the predominant removal process. Significant nitrification occurred when the BOD5 level dropped 45 mg/l. Similar results were obtained for six months although the sewage composition varied widely. D. innoxia develops and uses the wastewater as the unique nutritive source.  相似文献   

6.
Pollutant-removal efficiency of certain macrophytes and algae, such as Eichhornia crassipes, Microcystis aeruginosa, Scenedesmus falcatus, Chlorella vulgaris and Chlamydomonas mirabilis, has been tested in laboratory conditions to evaluate their potential role in wastewater treatment. Sewage of Varanasi city, mixed with the effluents of about 1200 small-scale industries, was used for the tests. The investigation was performed in three stages i.e. a water hyacinth culture followed by an algal culture, and finally a second water hyacinth culture. For the first water hyacinth culture, 10 water hyacinth plants were grown in a tank of wastewater with 15 days' retention time. In the second stage, algal species were cultured in the treated wastewater for 5 days, whilst in the third stage, water hyacinth plants were again grown for further treatment of the wastewater for 9 days. This three-stage aquaculture resulted in very high reductions of BOD (96.9%), suspended solids (78.1%), total alkalinity (74.6%), PO(4)-P (89.2%), NO(3)-N (81.7%), acidity (73.3%), NH(4)-N (95.1%), COD (77.9%), hardness (68.6%) and coliform bacteria (99.2%). An increase in the concentration of dissolved oxygen (70%) was also observed.  相似文献   

7.
A risk assessment of chemical constituents in rivers that receive untreated wastewater should take into account the adverse effects of increased biological oxygen demand (BOD), ammonia and reduced dissolved oxygen (DO). This concept was tested via a field study in the Balatuin River, The Philippines, where the influence of physical and chemical factors, including the consumer product chemical linear alkylbenezene sulfonate (LAS), to aquatic communities (algae, invertebrates, fish) was determined. Periphytic algae were found to be insensitive to high BOD (>10 mg/l) and ammonia (>0.01 mg unionized NH(3)/l), concentrations from organically enriched untreated wastewater discharges. However, taxa richness and abundance of macroinvertebrates were influenced greatly by the discharges. Where BOD and ammonia concentrations were elevated, the dominant taxa were oligochaete worms and chironominds. Fish and crustaceans (freshwater crabs and prawns) were found only in sites with the least BOD concentrations (furthest upstream and downstream). The maximum concentration of LAS (0.122 mg/l) was less than that expected to affect 5% of taxa (0.245 mg/l), whereas exceedences of DO and ammonia criteria were observed in several sites. The lack of recovery observed was attributed to influences of low DO, high ammonia and poor colonization from upstream and downstream reaches due to organically-enriched discharges  相似文献   

8.
Combined wastewater collection systems continue to serve as a common urban conveyance method in urban areas of Europe and older urban areas of the United States. This study uses combined wastewater collection system monitoring data from the urbanizing Liguori catchment and channel in Cosenza (Italy) to illustrate event-based delivery and distribution of conveyed pollutant indices. Motivated by recent European Union (EU) discharge control legislation, this study specifically differentiates the event-based delivery of these indices between dry and wet-weather flows. Although the relatively steady to diurnal-variable delivery phenomena in dry weather flows are known, transport limiting phenomena for wet-weather hydrology and mass delivery typically are not known for the same catchment. Limiting categories of transport for a pollutant phase are generated by variables such as flow volume and duration, stream power, hydrograph parameters, and previous dry hours (PDH). Transport limitations of wet and dry weather events from the 414-ha catchment were analyzed and characterized as limited by mass indices (first-order, first flush transport) or limited by flow (zero-order transport). Results indicated significant concentration differences between mass- and flow-limited events. Higher concentrations were associated with mass-limited events. Frequency distributions of flow, total suspended solids (TSS), chemical oxygen demand (COD), and five-day biochemical oxygen demand (BOD5) were consistently exponential for wet-weather and mass-limited events. In contrast, flow, TSS, and BOD5 concentrations were distributed normally for flow-limited events. Results indicated a reasonable linear relationship between discharged TSS, COD, and BOD5 (biochemical oxygen demand) for Liguori Channel discharges into the Crati River. Wet-weather event transport was predominately mass-limited for TSS, COD, and BOD5.  相似文献   

9.
The photo-Fenton reaction effect on the biodegradability improvement of 100 mg/L solution of 2,4-dichlorophenol (DCP) has been investigated. Biochemical oxygen demand (BOD) at 5 and 21 days, BODn/ chemical oxygen demand (COD) and BODn/total organic carbon (TOC) ratios, average oxidation state, and inhibition on activated sludge were monitored. For 50 mg/L hydrogen peroxide and 10 mg/L iron(II) initial concentrations and 40 minutes of reaction time in the photo-Fenton process, the biodegradability of the pretreated solution, measured as BOD5/COD ratio, was improved from 0 for the original DCP solution up to 0.18 (BOD21/COD = 0.24). At that point, all DCP was eliminated from the solution. To study the effect of the pretreatment step, the biological oxidation of pretreated solutions was tested in two semicontinuous stirred tank reactors, one operated with activated sludge and one with biomass acclimated to phenol. Results showed that more than 80% TOC removal could be obtained by codigestion of the pretreated solution with municipal wastewater. Total organic carbon removals of approximately 60% were also obtained when the sole carbon source for the aerobic reactors was the pretreated solution. The hydraulic retention times used in the bioreactors were of the same order of magnitude as those used at domestic wastewater treatment plants (i.e., between 12 and 24 hours). Kinetic studies based on pseudo-first-order kinetics have also been carried out. Constants were found to be in range 0.67 to 1.7 L x g total volatiles suspended solids(-1) x h(-1).  相似文献   

10.
Hu C  Wang Y 《Chemosphere》1999,39(12):2107-2115
The photodegradation and biodegradability have been investigated for four non-biodegradable commercial azo dyes, Reactive YellowKD-3G, Reactive Red 15, Reactive Red 24, Cationic Blue X-GRL, an indicator. Methyl Orange, and one industrial wool textile wastewater, using TiO2 suspensions irradiated with a medium pressure mercury lamp. The color removal of dyes solution and dyeing wastewater reached to above 90% within 20-30 min. of photocatalytic treatment. Biochemical oxygen demand (BOD) was found to increase, while chemical oxygen demand (COD), total organic carbon (TOC) decreased, so that the ratio of BOD5/COD of the wastewater increased from original zero up to 0.75. The result implies that photocatalytic oxidation enhanced the biodegradability of the dye-containing wastewater and therefore relationship between decolorization and biodegradability exists. When the color disappeared completely, the wastewater biodegraded normally and could be discharged for further treatment. The experimental results demonstrate that it is possible to combine photocatalysis with conventional biological treatment for the remedy of wastewater containing generally non-biodegradable azo dyes.  相似文献   

11.
Textile plant wastewater being treated in a facultative pond system had too high of a solids concentration to be reused in the dying and rinsing processes. Electrocoagulation was evaluated to further treat the pond effluent to remove turbidity, which was caused by dyes and microorganisms. A range of amperages were tested for removal of turbidity and chemical oxygen demand (COD). Electrocoagulation lowered the turbidity from 1400 NTU to below 50 NTU; and COD was lowered from 550 mg/L to approximately 250 mg/L, which was acceptable for reuse. In addition, a laboratory-scale sedimentation study was conducted on the electrocoagulated pond effluent, which indicated that a settling time of 35 minutes would provide for 80% removal of suspended solids, which was acceptable for reuse of the water in plant processes.  相似文献   

12.
Chen TY  Kao CM  Yeh TY  Chien HY  Chao AC 《Chemosphere》2006,64(3):497-502
The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.  相似文献   

13.
由于兰州段夏季黄河水的浊度较高,直接影响了自来水厂的正常运行,而目前水厂所用工艺无法满足高浊度水的处理要求,因此,采用自主研究开发的具有特殊结构的水旋澄清池对黄河高浊度水进行了强化处理的试验研究.研究结果表明:在多点投药混合方式下,强化水旋澄清池可提高浊度的处理效果;若在投加无机絮凝剂PAC后,再投加有机絮凝剂PAM进行复配作用,不仅可降低无机絮凝剂的用量,节约制水成本,而且提高了自来水厂的出水水质;结果也表明该水旋澄清池技术能够推广应用于黄河高浊度水的强化处理工艺中.  相似文献   

14.

This work demonstrated a simple, low-cost, rapid, and effective biochemical oxygen demand (BOD) estimation system based on a packed-bed bioreactor that can be easily self-built on-site at a particular wastewater treatment plant for continuous monitoring of the influent and effluent. The use of natural microbial consortium that were collected from the target wastewater and immobilized on a cheap porous carrier simply by adhesion resulted in an acceptable accuracy of over 95%. The newly developed semi-continuous operating mode with peak-type signals was shown to be able to continuously estimate BOD at a high flow rate to overcome the flow dependence of the oxygen electrode, limit clogging issues, enhance the response time, and lower the limit of detection. The resulting packed-bed bioreactors could work continuously for 22 h with a coefficient of variance (CoV) of only 1.8% or for 13 h a day for several days with a maximum CoV of 1.4% and their response was observed to be stable over 80 consecutive measurements. They exhibited stable responses at a wide pH range of 6.5–8.5, which is also the recommended range for aerobic wastewater treatment, emphasizing the greater ease of use of natural microorganisms for BOD estimation.

  相似文献   

15.
The performance of an innovative membrane bioreactor (MBR) process using anoxic phosphorus uptake with nitrification and denitrification for the treatment of municipal wastewater with respect to operational performance and effluent quality is addressed in this paper. The system was operated at steady-state conditions with a synthetic acetate-based wastewater at a hydraulic retention time (HRT) of 12 hours and on degritted municipal wastewater at a total system HRT of 6 hours. The MBR system was able to achieve 99% biochemical oxygen demand (BOD), chemical oxygen demand (COD), and ammonia-nitrogen (NH4(+)-N); 98% total Kjeldahl nitrogen (TKN); and 97% phosphorus removal, producing effluent BOD, COD, NH4+-N, TKN, nitrate-nitrogen, nitrite-nitrogen, and phosphate-phosphorus of <3, 14, 0.2, 0.26, 5.8, 0.21, and <0.01 mg/L, respectively, at the 6-hour HRT. The comparison of the synthetic and municipal wastewater run is presented in this paper. Steady-state mass balance on municipal wastewater was performed to reveal some key features of the modified MBR system.  相似文献   

16.
In industrial effluents, the presence of an infinite number of possible mixtures of substances and the high variability of chemical conditions ask for an evaluation of biodegradability by a global and simple method. Biological oxygen demand after five days (BOD5) using synthetic wastewater was studied by two different ways: dilution and manometric methods. It can therefore be established that BOD5 obtained by adding manufactured inocula to the synthetic medium (effluent containing known and easily biodegradable substances) is close to the values obtained with inocula taken from the treated effluent of an urban and a rural purification plant. It was found that BOD5 measurement of effluents presenting factors affecting biodegradation, similar of those found in industrial effluents, is very questionable. The BOD is in this case influenced by the synergic and antagonist interactions between numerous and variable parameters like as pH, nature and concentration of inoculum, concentration of nutriments, amount and nature of assimilable substances, presence of toxicants, and presence of nitrification inhibitors, which are typical of real industrial wastewaters.  相似文献   

17.
BOD5 dates back to 1912 when the Royal Commission decided to use the mean residence time of water in the rivers of England, 5 days, as a standard to measure the biochemical oxygen demand. Initially designed to protect the quality of river waters from extensive sewage discharge, the use of BOD5 has been quickly extended to waste water treatment plants (WWTPs) to monitor their efficiency on a daily basis. The measurement has been automatized but remains a tedious, time- and resource-consuming analysis. We have cross-validated a surrogate BOD5 method on two sites in France and in the USA with a total of 109 samples. This method uses a fluorescent redox indicator on a 96-well microplate to measure microbial catabolic activity for a large number of samples simultaneously. Three statistical tests were used to compare surrogate and reference methods and showed robust equivalence.  相似文献   

18.
A Xanthomonas sp. was isolated from the sludge on the drain outlet of a pharmaceutical factory. Then, the bacterium and carbon nanotubes (CNTs) were co-attached to an oxygen electrode for rapid analysis of biochemical oxygen demand (BOD). The response current was linear with BOD values in the range 10 to 300 mg/L for standard BOD solution with a response time of 35 seconds (R = 0.9994) and 20 to 580 mg/L for pharmaceutical wastewater with a response time < or =200 seconds (R = 0.9985), which means that this modified electrode might be used for online BOD analysis of pharmaceutical wastewater. Further studies revealed that the modified electrode can be used for BOD measurement in a high-salt condition. Also, the bacterium/CNTs biofilm can maintain its activity and good performance, even after being sealed and stored at 4 degrees C for 50 days.  相似文献   

19.
Maximum nitrogen removal in the step-feed activated sludge process.   总被引:1,自引:0,他引:1  
This paper presents a mathematical framework that can be used to determine the flow distributions for a step-feed activated sludge process that result in maximum nitrogen removal. The model indicates that nitrogen removal efficiency in a step-feed activated sludge process is highly dependent on the ultimate biochemical oxygen demand (BOD(L))-to-total Kjeldahl nitrogen (TKN) ratio of the wastewater. For typical domestic wastewater, which has a relatively high BOD(L)-to-TKN ratio, the step-feed process will outperform the Modified Ludzack-Ettinger process for nitrogen removal, when the flow to each step is optimally distributed. Using plant-specific water quality data and operating conditions from a 1-year period, nitrogen removal performance for four step-feed activated sludge plants operated by the Sanitation Districts of Los Angeles County (California) was calculated using the developed model. The calculated nitrogen removal efficiencies match well with the actual plant performance data. These results validate the model as a useful tool for predicting nitrogen removal in a step-feed activated sludge process. Other analyses revealed that improvements in nitrogen removal at existing facilities are achievable by adjusting the split of primary effluent flow to each anoxic zone several times during the day. The timing of the adjustments and the optimal flow splits can be determined from data on diurnal fluctuations in BOD(L) and TKN concentrations. An example is provided to illustrate the application of such an operating strategy and the potential enhancement of nitrogen removal.  相似文献   

20.
This paper presents a comparative assessment of the cost and quality of treatment of tannery wastewater in India by two common effluent treatment plants (CETPs) constructed for two tannery clusters, at Jajmau (Kanpur) and at Unnao in the state of Uttar Pradesh, India. The Jajmau plant is upflow anaerobic sludge blanket (UASB) process-based, while the Unnao plant is activated sludge process (ASP)-based. Investigations indicated that the ASP-based plant was superior in all respects. Total annualized costs, including capital and operation and maintenance costs, for the UASB and ASP plants were Rs. 4.24 million/million liters per day (MLD) and Rs. 3.36 million/MLD, respectively. Land requirements for the two CETPs were 1.4 hectares/MLD and 0.95 hectares/ MLD, respectively. Moreover, the treated UASB effluent had higher biochemical and chemical oxygen demand (BOD/ COD) and considerable amounts of other undesirable constituents, like chromium (Cr) and sulfide, as compared with the ASP effluent, which had lower BOD/COD and negligible concentration of sulfide and Cr. Sludge production from the UASB-based plant was also higher at 1.4 t/day/MLD, in comparison to the sludge production of 0.8 t/day/MLD for the ASP-based plant. Also, the entire sludge produced in the UASB-based plant was Cr-contaminated and, hence, hazardous, while only a small fraction of the sludge produced in the ASP-based plant was similarly contaminated. The results of this study are at variance with the conventional wisdom of the superiority of anaerobic processes for tannery wastewater treatment in tropical developing countries like India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号