首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of 2,4,5- and 2,4,6-trichlorophenol on the microbiota from a polluted and a pristine site of a river was studied. Bacterial metabolic activity measurements by epifluorescence microscopy showed that the polluted site contained more metabolically active cells than the pristine site. Total culturable bacterial counts and tolerant bacterial counts from both sites were not affected by incubation (for up to 5 days) with 200 ppm of chlorophenols. However, the incubation with 500 ppm of 2,4,5-trichlorophenol prevented detection of total and tolerant bacterial counts in the pristine site, and inhibited tolerants in the polluted site. None of 250 bacterial colonies directly isolated from these samples was able to grow on chlorophenols. However, bacteria able to grow on 2,4,6-trichlorophenol, were obtained by enrichment of water and sediments samples.  相似文献   

2.
A suspended-growth bioreactor (SGB) was operated for the treatment of a gaseous stream mimicking emissions generated at a leather industrial company. The main volatile organic compounds (VOCs) present in the gaseous stream consisted of 1-methoxy-2-propanol, 2,6-dimethyl-4-heptanone, 2-butoxyethanol, toluene and butylacetate. A microbial consortium able to degrade these VOCs was successfully enriched. A laboratory-scale SGB was established and operated for 210-d with an 8h cycle period and with shutdowns at weekends. Along this period, the SGB was exposed to organic loads (OL) between 6.5 and 2.3 x 10(2) g h(-1) m(-3). Most of the compounds were not detected at the outlet of the SGB. The highest total VOC removal efficiency (RE) (ca 99%) was observed when an OL of 1.6 x 10(2) g h(-1) m(-3) was fed to the SGB. The maximum total VOC elimination capacity (1.8 x 10(2) g h(-1) m(-3)) was achieved when the OL applied to the SGB was 2.3 x 10(2) g h(-1) m(-3). For all the operating conditions, the SGB showed high levels of degradation of toluene and butylacetate (RE approximately equal to 100%). This study also revealed that recirculation of the gaseous effluent improved the performance of the SGB. Overall, the SGB was shown to be robust, showing high performance after night and weekend shutdown periods.  相似文献   

3.
The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).  相似文献   

4.
Due to the higher stability of the spent nuclear fuel (mainly composed of UO2) under reducing conditions, and in order to enhance the retention/retardation of some key radionuclides, the olivine rock from the Lovasj?rvi intrusion has been proposed as a potential redox-active backfill-additive in deep high-level nuclear waste (HLNW) repositories. In this work, two different approaches have been undertaken in order to establish the redox buffer capacity of olivine rock: (1) The capacity of the rock to respond to changes in pH or pe has been demonstrated and the final (pH, pe) coordinates agree with the control exerted by the system Fe(II)/Fe(III). (2) The rate of consumption of oxygen has been determined at different pH values. These rates are higher than the ones reported in the literature for other solids, what would point to the possibility of using this rock as an additive to the backfill material in a HLNW.  相似文献   

5.
The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through “Pre-Incident” response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test.Implications: Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.  相似文献   

6.
In this study, an environmental assessment on a soil washing process for the remediation of a Pb-contaminated shooting range site was conducted, using a green and sustainable remediation tool, i.e., SiteWise ver. 2, based on data relating specifically to the actual remediation project. The entire soil washing process was classified into four major stages, consisting of soil excavation (stage I), physical separation (stage II), acid-based (0.2 N HCl) chemical extraction (stage III), and wastewater treatment (stage IV). Environmental footprints, including greenhouse gas (GHG) emissions, energy consumption, water consumption, and critical air pollutant productions such as PM10, NO x , and SO x , were calculated, and the relative contribution of each stage was analyzed in the environmental assessment. In stage I, the relative contribution of the PM10 emissions was 55.3 % because the soil excavation emitted the fine particles. In stage II, the relative contribution of NO x and SO x emissions was 42.5 and 52.5 %, respectively, which resulted from electricity consumption for the operation of the separator. Stage III was the main contributing factor to 63.1 % of the GHG emissions, 67.5 % of total energy used, and 37.4 % of water consumptions. The relatively high contribution of stage III comes from use of consumable chemicals such as HCl and water-based extraction processes. In stage IV, the relative contributions of GHG emissions, total energy used, and NO x and SO x emissions were 23.2, 19.4, 19.5, and 25.3 %, respectively, which were caused by chemical and electricity demands for system operation. In conclusion, consumable chemicals such as HCl and NaOH, electric energy consumption for system operation, and equipment use for soil excavation were determined to be the major sources of environmental pollution to occur during the soil washing process. Especially, the acid-based chemical extraction process should be avoided in order to improve the sustainability of soil washing processes.  相似文献   

7.
污水厂生物除臭设施运行及影响因素的研究   总被引:2,自引:0,他引:2  
在污水处理过程中会有大量的恶臭气体产生,主要含硫化氢和氨等发臭物质.这些臭味物质逸散到空气中,对污水处理厂及其周边的空气环境造成危害.针对清河污水处理厂原有生物除臭设施除臭效率难以提高的问题,对气体收集系统和生物除臭滤池内的喷淋管路进行了改造,并更换了新型生物填料.本研究对改造前后的除臭效果进行了考察,结果显示,硫化氢的平均去除率从改造前的36.5%提高到62.9%,最大去除率可以达到96.2%;氨的去除率从28.2%提高到接近100%.臭味气体的处理效果随除臭滤池的温度、气体的相对湿度的升高而提高.为此,对臭味气体的负荷、流量、温度以及湿度等因素进行了研究,在温度>20℃、相对湿度>80%的条件下,生物除臭滤池能够有比较理想的处理效果.  相似文献   

8.
Abstract

Although aldehydes contribute to ozone and particulate matter formation, there has been little research on the biofiltration of these volatile organic compounds (VOCs), especially as mixtures. Biofiltration degradation kinetics of an aldehyde mixture containing hexanal, 2-methylbutanal (2-MB), and 3-methylbutanal (3-MB) was investigated using a bench-scale, synthetic, media-based biofilter. The adsorption capacity of the synthetic media for a model VOC, 3-methylbutanal, was 10 times that of compost. Periodic residence time distribution analysis (over the course of 1 yr) via a tracer study (84–99% recovery), indicated plug flow without channeling in the synthetic media and lack of compaction in the reactor. Simple first-order and zero-order kinetic models both equally fit the experimental data, yet analysis of the measured rate constants versus fractional conversion suggested an overall first-order model was more appropriate. Kinetic analysis indicated that hexanal had a significantly higher reaction rate (k = 0.09 ± 0.005 1/sec; 23 ± 1.3 ppmv) compared with the branched aldehydes (k = 0.04 ± 0.0036 1/sec; 31 ± 1.6 ppmv for 2-MB and 0.03 ± 0.0051 1/sec; 22 ± 1.3 ppmv for 3-MB). After 3 months of operation, all three compounds reached 100% removal (50 sec residence time, 18–46 ppmv inlet). Media samples withdrawn from the biofilter and observed under scanning electron microscopy analysis indicated microbial growth, suggesting removal of the aldehydes could be attributed to biodegradation.  相似文献   

9.
A semianalytical soil-pesticide transport model is formulated based on a compartmental approach to determine spatial and temporal variations of pesticide residues across a soil profile. The compartmental model is implemented by drawing an analogy between a series of continuous-flow stirred tank reactors and a soil horizon that consists of multiple perfectly mixed compartments. The analogy is strengthened by exploiting a relation between the compartment series and the conventional convective-dispersive equation (CDE) for vertical transport in the soil. Consequently, the number of compartments in the model formulation is not free, but dictated as a function of transport parameters. The model formulation allows consideration of arbitrary boundary value specifications and also, for some cases, spatially varying initial concentration profiles. Sorption kinetics is represented via a two-site model that involves a linear sorption isotherm and a first-order irreversible sorption or a radial diffusive penetrating model. For these three cases, analysis of the compartmental model allows the resultant concentration profiles to be expressed in terms of the Poisson distribution. When a nonlinear kinetic sorption model is used to simulate the sorption processes, an analytical solution is not found and a numerical approach is required.  相似文献   

10.
Since 1971 unshaded leaves from the top of marked beech trees (Fagus sylvatica L.) in the vicinity of a regional waste incinerator have been sampled every year in early September. The unwashed leaf samples were analyzed for the concentration of Cl- and, in some years, for 16 other elements. The operation of the waste incinerator distinctly increased the Cl- concentration in the foliage. When the flue gas filtration did not work properly, several other elements also accumulated (without any obvious dust accumulation). There were no significant correlations between precipitation and concentration of water-soluble elements in foliage samples. This suggested that precipitation was not accelerating foliar leaching so that the bioindication of pollutant accumulation is not restricted in foliage with a well developed cuticula.  相似文献   

11.
The performance of phillipsite as a matrix for slow-release formulation of oxamyl [N,N-dimethyl-2-methylcarbamoyl-oxymino-2-(methylthio)acetamide] was tested. The adsorption kinetics followed a first-order law, and the adsorption isotherm fitted well in a two-surface Langmuir model, suggesting a double mechanism of interaction between oxamyl and the sorbent. The sorption mechanism, studied by FTIR, provided two fractions of oxamyl. The first one is sorbed on the mineral surface, linked by H-bonding, and the second one is constituted by a multilayer of oxamyl molecules linked by a water bridge between them. The release kinetics of oxamyl from a substratum zeolite-oxamyl also follows a first-order law, with two stages that correspond to both fractions of oxamyl previously detected.  相似文献   

12.
Although aldehydes contribute to ozone and particulate matter formation, there has been little research on the biofiltration of these volatile organic compounds (VOCs), especially as mixtures. Biofiltration degradation kinetics of an aldehyde mixture containing hexanal, 2-methylbutanal (2-MB), and 3-methylbutanal (3-MB) was investigated using a bench-scale, synthetic, media-based biofilter. The adsorption capacity of the synthetic media for a model VOC, 3-methylbutanal, was 10 times that of compost. Periodic residence time distribution analysis (over the course of 1 yr) via a tracer study (84-99% recovery), indicated plug flow without channeling in the synthetic media and lack of compaction in the reactor. Simple first-order and zero-order kinetic models both equally fit the experimental data, yet analysis of the measured rate constants versus fractional conversion suggested an overall first-order model was more appropriate. Kinetic analysis indicated that hexanal had a significantly higher reaction rate (k = 0.09 +/- 0.005 1/sec; 23 +/- 1.3 ppmv) compared with the branched aldehydes (k = 0.04 +/- 0.0036 1/sec; 31 +/- 1.6 ppmv for 2-MB and 0.03 +/- 0.0051 1/sec; 22 +/- 1.3 ppmv for 3-MB). After 3 months of operation, all three compounds reached 100% removal (50 sec residence time, 18-46 ppmv inlet). Media samples withdrawn from the biofilter and observed under scanning electron microscopy analysis indicated microbial growth, suggesting removal of the aldehydes could be attributed to biodegradation.  相似文献   

13.

The water fluxes through the mountainous forest ecosystem ‘Mühleggerköpfl’ were simulated by means of the mechanistic soil physical model Hydrus ID. The objective was to set up a nitrogen budget in order to decide if the ecosystem accumulates nitrogen or if nitrogen leaks from the site. The simulated annual loss of N by percolation ranges between 0.4 and 1 g N m−2 yr and is smaller than the annual input by bulk and occult deposition, which combines to approx 1.2–1.5 g N m yr. Obviously the forest soil presently accumulates N. With an N input-rate exceeding the N output, the operationally defined status of N saturation is not yet reached. Comparing the magnitude of the N pool in the soil (several kg N m−2) with the rate of the annual increase (a few g N m−2yr−1), the process of N saturation is apparently slow.

  相似文献   

14.
Substance flow analysis (SFA) is applied to a case study of chlorine metabolism in a chlor-alkali industrial chain. A chain-level SFA model is constructed, and eight indices are proposed to analyze and evaluate the metabolic status of elemental chlorine. The primary objectives of this study are to identify low-efficiency links in production processes and to find ways to improve the operational performance of the industrial chain. Five-year in-depth data collection and analysis revealed that system production efficiency and source efficiency continued increasing since 2008, i.e., when the chain was first formed, at average annual growth rates of 21.01 % and 1.01 %, respectively. In 2011, 64.15 % of the total chlorine input was transformed into final products. That is, as high as 98.50 % of the chlorine inputs were utilized when other by-products were counted. Chlorine loss occurred mostly in the form of chloride ions in wastewater, and the system loss rate was 0.54 %. The metabolic efficiency of chlorine in this case was high, and the chain system had minimal impact on the environment. However, from the perspectives of processing depth and economic output, the case study of a chlor-alkali industrial chain still requires expansion.  相似文献   

15.
Mechanisms of phosphorus solubilisation in a limed soil as a function of pH   总被引:5,自引:0,他引:5  
Phosphorus (P) quantity-intensity relationships are central to the solubility and release of P from soil to water. Relationships between P extractable by 0.5 M NaHCO extractable P (Olsen P; quantity, Q) and P extractable by 0.01 M CaCl(2) (CaCl(2)-P; possible predictor of soil solution or drainage water P; intensity, I) are curvilinear: above a certain Olsen P concentration, CaCl(2)-P becomes much more soluble than when below it. Aluminium-, Fe- and Ca-P forms (extractable by Olsen's reagent) are thought to control P solubility. Thus, our objectives were to identify P forms in equilibrium with CaCl(2)-P via solubility equilibrium experiments, and the behaviour of CaCl(2)-P in relation to Al, Fe and Ca associated P, determined with 31P high power decoupling magic angle spinning nuclear magnetic resonance spectroscopy (31P HPDec/MAS NMR). Results indicated that two Q-I relationships occurred, one for soils above pH 5.8, and the other for soils below pH 5.8. Above pH 5.8, soils were saturated with respect to hydroxyapatite (Ca(5)(PO(4))(3)OH) and undersaturated with respect to beta-tricalcium phosphate (beta-Ca(3)(PO(4))(2)), while log ion-activity products showed that all soils and pHs were either saturated or in equilibrium with variscite (AlPO(4).2H(2)O) or its amorphous analogue. Using 31P HPDec/MAS NMR, Ca-P was best correlated with CaCl(2)-P in soils above pH 5.8, and with Al-P in soils below this pH. This study demonstrates the value of solid-state NMR in conjunction with wet chemical techniques for the study of labile P and P loss from pasture soils with a wide range of managements.  相似文献   

16.
This study investigated the presence of organochlorine pollutants in abiotic and biotic samples from Lake Como (Italy). DDTs and PCBs were found to be the major contaminants, ranging from 0.04 to 4.25 and from 0.25 to 40.8 μg/g lipid respectively. Evidence of biomagnification according to the trophic role of the investigated organisms was highlighted by means of Stable Isotope Analysis. A Trophic Magnification Factor (TMF) was calculated for the chemicals of interest and the applicability of the method for global use was confirmed. Statistically significant correlation has been found between the calculated trophic level and the concentrations of more lipophilic compounds, while for the less lipophilic (e.g., HCH, 3CBs) the relationship is no statistically significant and the TMF is close to 1.The role of the foraging area in affecting PCB and DDT concentrations within aquatic ecosystems has been highlighted by a Principal Component Analysis (PCA).  相似文献   

17.
The first example of a ruthenium sensitizer (TUS-22) having a natural dye, bisdemethoxycurcumin, as a ligand has been synthesized. The dye-sensitized solar cell based on this novel dye showed 5.8% conversion efficiency under AM 1.5 (100 mW/cm2) irradiation.  相似文献   

18.
19.
We evaluated the molecular diversity of narG gene from Suquía River sediments to assess the impact of the nitrate concentration and water quality on the composition and structure of the nitrate-reducing bacterial community. To this aim, a library of one of the six monitoring stations corresponding to the highest nitrate concentration was constructed and 118 narG clones were screened. Nucleotide sequences were associated to narG gene from alpha-, beta-, delta-, gammaproteobacteria and Thermus thermophilus. Remarkably, 18% of clones contained narG genes with less than 69% similarity to narG sequences available in databases. Thus, indicating the presence of nitrate-reducing bacteria with novel narG genes, which were quantified by real-time PCR. Results show a variable number of narG copies, ranging from less than 1.0 × 102 to 5.0 × 104 copies per ng of DNA, which were associated with a decreased water quality index monitored along the basin at different times.  相似文献   

20.
Ozawa H  Kawaguchi H  Okuyama Y  Arakawa H 《Ambio》2012,41(Z2):149-150
The first example of a ruthenium sensitizer (TUS-22) having a natural dye, bisdemethoxycurcumin, as a ligand has been synthesized. The dye-sensitized solar cell based on this novel dye showed 5.8% conversion efficiency under AM 1.5 (100 mW/cm(2)) irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号