共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
Yongtao Li Christina L. McCarty Ed J. George 《Frontiers of Environmental Science & Engineering》2011,5(3):417-425
A rapid, sensitive, and cost-effective analytical method was developed for the analysis of selected semi-volatile organic compounds in water. The method used an automated online solid-phase extraction technique coupled with programmed-temperature vaporization large-volume injection gas chromatography/mass spectrometry. The water samples were extracted by using a fully automated mobile rack system based on x-y-z robotic techniques using syringes and disposable 96-well extraction plates. The method was validated for the analysis of 30 semivolatile analytes in drinking water, groundwater, and surface water. For a sample volume of 10 mL, the linear calibrations ranged from 0.01 or 0.05 to 2.5 ??g·L?1, and the method detection limits were less than 0.1 ??g·L?1. For the reagent water samples fortified at 1.0 ??g·L?1 and 2.0 ??g·L?1, the obtained mean absolute recoveries were 70%?C130% with relative standard deviations of less than 20% for most analytes. For the drinking water, groundwater, and surface water samples fortified at 1.0 ??g·L?1, the obtained mean absolute recoveries were 50%?C130% with relative standard deviations of less than 20% for most analytes. The new method demonstrated three advantages: 1) no manipulation except the fortification of surrogate standards prior to extraction; 2) significant cost reduction associated with sample collection, shipping, storage, and preparation; and 3) reduced exposure to hazardous solvents and other chemicals. As a result, this new automated method can be used as an effective approach for screening and/or compliance monitoring of selected semi-volatile organic compounds in water. 相似文献
3.
Perfluorinated compounds (PFCs) are ubiquitously distributed in the environment mainly as perfluoro-carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFASs). In this paper, six PFCAs and two PFASs were quantified in surface and tap water samples from 12 sites around Lake Taihu near Shanghai City in East China. Predominant PFCs were perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), of which the concentration ranges were 6.8–206 and 1.2–45 ng·L−1, the geometric means were 35.3 and 9.4 ng·L−1, and the median (quartile range) values were 31.4 (34.4) and 10.4 (10.7) ng·L−1, respectively. Other PFCs were also detected but in much lower concentrations than PFOA. The sources of the PFCs were expected to be direct industrial discharges in the Lake Taihu area, and this area was also a possible source of PFCs contaminations in Shanghai district in the downstream. PFCs distributions were found different in the upstream, downstream and north part of Lake Taihu. Occurrences of PFCs in the tap water in Lake Taihu area indicated their exposure to the local people. A brief estimation of the environmental risks by PFCs implied no acute or immediate risks from PFCs to local human health, but chronic risks from PFOA in the tap water should be considered in the downstream regions. 相似文献
4.
建立了同位素稀释-高分辨气相色谱/高分辨质谱法(HRGC/HRMS)测定南极土壤、苔藓和地衣样品中23种有机氯农药的分析方法.样品经冷冻干燥、研磨处理后用正己烷∶二氯甲烷(1∶1,V∶V)混合溶剂进行加速溶剂萃取(ASE),萃取液经硅胶-氧化铝层析柱和C18小柱净化后,进HRGC/HRMS检测分析.样品中目标物定量采用平均相对响应因子法,6点标准曲线响应因子的相对标准偏差(RSD)≤20%,方法的线性范围为0.4—800μg·L-1,回收率在62%—101%之间.实际样品分析结果表明,23种OCPs的加标回收率为40%—100%,在土壤、苔藓和地衣样品中的检出限(LODs)分别为0.024—5.01、0.2—12.2、0.020—13.7 pg·g-1,可以满足南极环境样品中有机氯农药的检测分析. 相似文献
5.
Feng Zhu Zhijian Yao Wenliang Ji Deye Liu Hao Zhang Aimin Li Zongli Huo Qing Zhou 《Frontiers of Environmental Science & Engineering》2020,14(3):51
6.
Xueqi Fan Jie Gao Wenchao Li Jun Huang Gang Yu 《Frontiers of Environmental Science & Engineering》2020,14(1):8
7.
Chunli Chen Tieyu Wang Jong Seong Khim Wei Luo Wentao Jiao 《Chemistry and Ecology》2013,29(2):165-176
Concentrations of perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and other perfluorinated compounds (PFCs) were measured in water and sediment from coastal Bohai Bay and surrounding rivers flowing into the bay. Of the 15 PFCs measured, PFOS and PFOA were detected with the greatest frequency. Concentrations in water ranged from<0.2 to 31 ng·L?1 and<1.0 to 82 ng·L?1 for PFOS and PFOA, respectively. Concentrations of PFOS and PFOA in sediments ranged from<0.1 to 2.0 ng·g?1 dw and<0.1 to 0.5 ng·g?1 dw, respectively. Concentrations of PFCs in Bohai Bay were less than those observed in other areas in Asia, but greater concentrations of ∑PFCs were observed in the Dalin River with concentrations increasing from upstream to downstream, and the greatest concentrations in sediment were observed in tidal flats. The ratio of ∑PFCs in sediment and water indicated that sediment could serve as a significant sink for PFUnA. 相似文献
8.
WEI Yimei ZHANG Yuan XU Jian GUO Changsheng LI Lei FAN Wenhong 《Frontiers of Environmental Science & Engineering》2014,8(3):357
Precise and sensitive methods for the simultaneous determination of different classes of antibiotics, including sulphonamides, fluoroquinolones, macrolides, tetracyclines, and trimethoprim in surface water, sediments, and fish muscles were developed. In water samples, drugs were extracted with solid-phase extraction (SPE) by passing 1000 mL of water through hydrophilic lipophilic balanced (HLB) SPE cartridges. Sediment samples were solvent-extracted, followed by tandem SPE (strong anion exchange (SAX) + HLB) clean-ups. Fish muscles were extracted by a mixture of acetonitrile and citric buffer (80:20, v/v) solution, and cleaned by SPE. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) detection was employed to quantify all compounds. The recoveries for the antibiotics in the spiked water, sediment, and fish samples were 60.2%–95.8%, 48.1%–105.3%, and 59.8%–103.4%, respectively. The methods were applied to samples taken from Dianchi Lake, China. It showed that concentrations of the detected antibiotics ranged from limits of quantification (LOQ) to 713.6 ng·L-1 (ofloxacin) in surface water and from less than LOQ to 344.8 μg·kg-1 (sulphamethoxazole) in sediments. The number of detected antibiotics and the overall antibiotic concentrations were higher in the urban area than the rural area, indicating the probable role of livestock and human activities as important sources of antibiotic contamination. In fish muscles, the concentration of norfloxacin was the highest (up to 38.5 μg·kg-1), but tetracyclines and macrolides were relatively low. Results showed that the methods were rapid and sensitive, and capable of determining several classes of antibiotics from each of the water, sediment, and fish matrices in a single run. 相似文献
9.
建立了利用固相萃取-气相色谱(SPE-GC)测定水体中胺鲜酯残留量的方法.考查了3种不同固相萃取柱(C18、florisil、OasisR HLB)对水溶性农药胺鲜酯的吸附效果,发现它们对水中胺鲜酯的萃取效率依次为8%、13% 和96%;进一步研究了利用OasisR HLB萃取水中胺鲜酯的最佳条件(洗脱剂二氯甲烷用量4~8 mL),OasisR HLB(60 mg)小柱对胺鲜酯的保留容量高达200 μg·柱-1.运用该方法测定胺鲜酯光解试验样品,结果表明胺鲜酯质量浓度的对数与光照时间呈良好的线性关系.胺鲜酯在氙灯下的光化学降解符合一级动力学反应,光解半衰期为82 min,较易光解. 相似文献
10.
将不同非氢原子自身及非氢原子之间的关系参数化并构建出新的结构描述符,对部分酚类化合物分子结构进行了参数化表达。采用逐步回归(SMR)与多元线性回归(MLR)相结合的方法建立了化合物结构与醇/水分配系数(log Kow)之间的关系模型,模型的建模相关系数(r)为0.988,标准偏差(SD)为0.121;"留一法"交互检验的相关系数(Q2)为0.966,标准偏差(SDCV)为0.148。结果表明结构描述符能较好地表征化合物分子结构特征,所建模型稳定性好,预测能力强,对于酚类化合物QSPR研究具有一定的参考价值。 相似文献
11.
长江三峡库区江水和武汉地区地面水中PFOS和PFOA污染现状调查 总被引:29,自引:0,他引:29
为了弄清我国重要水系长江三峡库区水中的全氟有机物污染现状,从重庆上游至宜昌的不同江段和武汉地区采集江水样品,采用固相萃取-高效液相色谱/质谱仪联机系统选择离子法(HPLC/MS-SIM,PFOSm/z=499,PFOAm/z=413),测定了水样品中的PFOS和PFOA含量。调查结果表明,长江三峡库区江水和武汉地区地面水中均广泛存在着PFOS和PFOA污染。个别地区水样品中PFOS含量大于10ng·L-1,PFOA含量甚至高达111ng·L-1和298ng·L-1。这些结果提示,该水系局部地区可能存在着PFOS或PFOA污染源。 相似文献
12.
V. L. Maggio L. R. Alexander V. E. Green J. B. Gill D. G. Patterson Jr. B. N. Green 《毒物与环境化学》2013,95(2-3):143-154
We present the salient characteristics of tuning procedures that have evolved from our 3 years of experience while producing large amounts of data of the highest quality. Our laboratory routinely analyzes 2,3,7,8‐substituted dioxins and furans at parts per quadrillion levels in 50–100 g of human serum samples using the VG 70S/SE stand‐alone gas chromatography/mass spectrometry (GC/MS) system at 10000 resolution (defined by 5% overlap) in the selected ion recording mode. Trace measurement of dioxins and furans in human biological matrices—for example, whole blood, serum, or adipose tissue‐requires reproducible instrument tuning within day as well as among days for quality results. Additionally, instument‐tuning procedures among operators must be reproducible to minimize operator bias because periodically different operators are used. Instrument tuning is highly subjective and argumentive; therefore, to minimize the ambiguity within our laboratory, we have standardized our technique to reproducibly tune the GC/MS system. 相似文献
13.
Patel KS Shrivas K Brandt R Jakubowski N Corns W Hoffmann P 《Environmental geochemistry and health》2005,27(2):131-145
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central
India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The
soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of
West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination
in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental
samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people
living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.). 相似文献