首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Scant evidence is available worldwide on the relative influence of occupational social class and educational level on body concentrations of persistent organic pollutants (POPs) in the general population. The objective was to analyse such influence in a representative sample of the general population of Catalonia, Spain. Participants in the Catalan Health Interview Survey aged 18–74 were interviewed face-to-face, gave blood, and underwent a physical exam. The role of age, body mass index (BMI), and parity was analysed with General Linear Models, and adjusted geometric means (GMs) were obtained. Crude (unadjusted) concentrations were higher in women and men with lower education, and in women, but not men, in the less affluent social class. After adjusting for age, in women there were no associations between POP levels and social class or education. After adjusting for age and BMI, men in the less affluent class had higher p,p′-DDE concentrations than men in class I (p-value = 0.016), while men in class IV had lower HCB than men in the upper class (p-value < 0.03). Also in contrast with some expectations, positive associations between education and POP levels were observed after adjusting for age and BMI in men; e.g., men with university studies had higher HCB concentrations than men with first stage of primary schooling (adjusted GM 153.9 and 80.5 ng/g, respectively) (p-value < 0.001). When education and social class were co-adjusted for, some positive associations with education in men remained statistically significant, whereas class remained associated only with p,p′-DDE. Educational level influenced blood concentrations of POPs more than occupational social class, especially in men. In women, POP concentrations were mainly explained by age/birth cohort, parity and BMI. In men, while concentrations were also mainly explained by age/birth cohort and BMI, both social class and education showed positive associations. Important characteristics of socioeconomic groups as age and BMI may largely explain crude differences among such groups in internal contamination by POPs. The absence of clear patterns of relationships between blood concentrations of POPs and indicators of socioeconomic position may fundamentally be due to the widespread, lifelong, and generally invisible contamination of human food webs. Decreasing historical trends would also partly explain crude socioeconomic differences apparently due to birth cohort effects.  相似文献   

2.
BackgroundPersistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and pesticides bioaccumulate through the food chain and cross the placenta. POPs are developmental toxicants in animals but the epidemiological evidence on pregnancy outcomes is inconsistent. Maternal gestational weight gain has been recently suggested as a key factor explaining the association between PCBs with lower birth weight.AimsWe examined whether in utero exposure to current low levels of different POPs is associated with fetal growth and gestational age in a mother–child cohort in Crete, Greece (Rhea study), and evaluated specifically whether maternal gestational weight gain may affect this association.MethodsWe included 1117 mothers and their newborns from the Rhea study. Mothers were interviewed and blood samples collected during the first trimester of pregnancy. Information on birth outcomes was retrieved from medical records. Concentrations of several PCBs, other organochlorine compounds (dichlorodiphenyl dichloroethene [DDE], dichlorodiphenyl trichloroethane [DDT] and hexachlorobenzene [HCB]) and one polybrominated diphenyl ether congener (tetra-bromodiphenyl ether [BDE-47]), were determined in maternal serum by triple quadrupole mass spectrometry. Multiple linear regression models were used to investigate the associations of birth weight, gestational age, and head circumference with each compound individually on the log10 scale, and with combined exposures through the development of an exposure score.ResultsIn multivariate models, birth weight was negatively associated with increasing levels of HCB (β =  161.1 g; 95% CI: − 296.6, − 25.7) and PCBs (β =  174.1 g; 95% CI: − 332.4, − 15.9); after further adjustment for gestational weight gain these estimates were slightly reduced (β =  154.3 g; 95% CI: − 300.8, − 7.9 for HCB and β =  135.7 g; 95% CI: − 315.4, 43.9 for PCBs). Furthermore, in stratified analysis, the association between POPs and birth weight was only observed in women with inadequate or excessive gestational weight gain. Small, negative associations were observed with head circumference while no association was observed with gestational age.ConclusionsThe findings suggest that prenatal exposure to PCBs and HCB impairs fetal growth and adds to the growing literature that demonstrates an association between low-level environmental pollutant exposure and fetal growth. Furthermore our results suggest that the association of POPs, maternal gestational weight gain and birth weight is probably more complex than that previously hypothesized.  相似文献   

3.
Persistent organic pollutants (POPs) are suggested to contribute to lower vitamin D levels; however, studies in humans are scarce and have never focused on pregnancy, a susceptibility period for vitamin D deficiency. We investigated whether serum levels of POPs were associated with circulating 25-hydroxyvitamin D3 [25(OH)D3] concentration in pregnancy. Cross-sectional associations of serum concentrations of eight POPs with plasma 25(OH)D3 concentration were analyzed in 2031 pregnant women participating in the Spanish population-based cohort INfancia y Medio Ambiente (INMA) Project. Serum concentrations of POPs were measured by gas chromatography and plasma 25(OH)D3 concentration was measured by high-performance liquid chromatography in pregnancy (mean 13.3 ± 1.5 weeks of gestation). Multivariable regression models were performed to assess the relationship between blood concentrations of POPs and 25(OH)D3. An inverse linear relationship was found between serum concentration of PCB180 and circulating 25(OH)D3. Multivariate linear regression models showed higher PCB180 levels to be associated with lower 25(OH)D3 concentration: quartile Q4 vs. quartile Q1, coefficient =  1.59, 95% CI − 3.27, 0.08, p trend = 0.060. A non-monotonic inverse relationship was found between the sum of predominant PCB congeners (PCB 180, 153 and 138) and 25(OH)D3 concentration: coefficient (95% CI) for quartile Q2 vs. Q1 [− 0.50 (− 1.94, 0.94)], quartile Q3 vs. Q1 [− 1.56 (− 3.11, − 0.02)] and quartile Q4 vs. Q1 [− 1.21 (− 2.80, 0.38)], p trend = 0.081. No significant associations were found between circulating 25(OH)D3 and serum levels of p,p′-DDE, p,p′-DDT, HCB, and ß-HCH. Our results suggest that the background exposure to PCBs may result in lower 25(OH)D3 concentration in pregnant women.  相似文献   

4.
BackgroundSurveys of human exposure to environmental chemicals do not integrate the number of compounds detected per person and the concentration of each compound. This leaves untested relevant exposure scenarios, such as whether individuals with low concentrations of some compounds have high concentrations of the other compounds.ObjectiveTo analyze the number of persistent organic pollutants (POPs) detected at high concentrations.MethodsSerum concentrations of 19 POPs were analyzed by gas chromatography with electron-capture detection in a representative sample of the general population of Catalonia, Spain (N = 919).ResultsOver 58% of participants had concentrations in the top quartile of ≥ 1 of the eight most prevalent POPs, and 34% of ≥ 3 POPs. 83% of women 60 to 74 years old had concentrations of ≥ 3 POPs in the top quartile; 56% of women 60 to 74 years had p,p′-DDE, HCB and β-HCH all in their respective top quartiles, and 48% had concentrations of ≥ 6 POPs in the top quartile. Over 30% of subjects had concentrations in the top decile of 1 to 5 of the eight most prevalent POPs. Half of the population had levels of 1 to 5 POPs > 500 ng/g. Less than 4% had all eight POPs in the lowest quartile.ConclusionsMore than half of the study population had concentrations in the top quartile of ≥ 1 POPs. Significant subgroups of the population accumulate POP mixtures at high concentrations. POP concentrations appear low in most of the population only when each individual compound is looked at separately.  相似文献   

5.
Persistent organic pollutants (POPs) present in the living environment are thought to have detrimental health effects on the population, with pregnant women and the developing foetus being at highest risk. We report on the levels of selected POPs in maternal blood of 155 delivering women residing in seven regions within the São Paulo State, Brazil.The following selected POPs were measured in the maternal whole blood: 12 polychlorinated biphenyls (PCBs) congeners (IUPAC Nos. 99, 101, 118, 138, 153, 156, 163, 170, 180, 183, 187, 194); dichlordiphenyltrichloroethane p,p′-DDT, diphenyldichloroethylene p,p′-DDE and other pesticides such as hexachlorocyclohexanes (α-HCH, β-HCH, γ-HCH), hexachlorobenzene (HCB), chlordane derivatives cis-chlordane, trans-chlordane, oxy-chlordane, cis-nonachlor and trans-nonachlor.Statistical comparisons between regions were performed only on compounds having concentrations above LOD in 70% of the samples. PCB118 congener was found to be highest in the industrial site (mean 4.97 ng/g lipids); PCB138 congener concentration was highest in the Urban 3 site (mean 4.27 ng/g lipids) and congener PCB153 was highest in the industrial and Urban 3 sites with mean concentration of 7.2 ng/g lipids and 5.89 ng/g lipids respectively. Large differences in levels of p,p′-DDE between regions were observed with the Urban 3 and industrial sites having the highest concentrations of 645 ng/g lipids and 417 ng/g lipids, respectively; β-HCH was found to be highest in the Rural 1 site; the γ-HCH in Rural 1 and industrial; the HCB in the Rural 1 and industrial sites and oxy-chlordane and t-NC in the Rural 2 sites. An association between levels of some contaminants and maternal age and parity was also found.  相似文献   

6.
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.  相似文献   

7.
Background exposure to persistent organic pollutants (POPs), lipophilic xenobiotics that accumulate mainly in adipose tissue, has recently emerged as a new risk factor for cardiovascular diseases. This prospective study was performed to evaluate if plasma concentrations of selected POPs predict incident stroke among the elderly. Twenty‐one POPs (including 16 polychlorinated biphenyl (PCB) congeners, 3 organochlorine (OC) pesticides, 1 brominated diphenyl ether (BDE), and 1 dioxin) were measured in plasma collected at baseline in 898 participants aged 70 years of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). Stroke diagnosis was validated by hospital records. During the five year follow-up, 35 subjects developed hospital-treated stroke. After adjusting for known stroke risk factors, most PCBs with 4, 5, or 6 chlorine atoms, p,p′-DDE, trans-nonachlor, and octachlorodibenzo-p-dioxin significantly predicted the risk of stroke. Across quartiles of summary measures of PCBs and OC pesticides, the adjusted ORs were 1.0, 0.8 (95% confidence interval: 0.2–2.5), 1.2 (0.4–3.4), and 2.1 (0.7–6.2) for PCBs and 1.0, 1.2 (0.3–4.2), 2.3 (0.7–6.9), and 3.0 (1.0–9.4) for OC pesticides (P for trend = 0.11 and 0.03, respectively). The adjusted ORs among participants ≥ 90th percentile of the summary measures were 5.5 (1.7–18.1) for PCBs and 4.0 (1.1–14.6) for OC pesticides; corresponding ORs for those ≥ 95th percentile were 7.8 (2.1–29.6) and 9.5 (2.3–38.9). Background exposure to POPs may play an important role in development or progression of stroke in the elderly.  相似文献   

8.
ObjectivesIn animal experiments, persistent organic pollutants (POPs) have induced visceral obesity. To address this possibility in humans, we evaluated associations between POPs and abdominal obesity both cross-sectionally and prospectively.MethodsTwenty-one plasma POPs (16 polychlorinated biphenyl (PCB) congeners, 3 organochlorine (OC) pesticides, 1 brominated diphenyl ether (BDE), and 1 dioxin) were measured at baseline in 970 participants aged 70 years of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), with prospective analyses in 511 participants re-examined after 5 years. Abdominal obesity was defined by an increased waist circumference.ResultsIn the cross-sectional analyses, concentrations of the less chlorinated PCBs, OC pesticides such as p,p′-DDE and dioxin had adjusted odds ratios of 2 to 3 for abdominal obesity. Many relations had inverted U-shapes rather than being linear, particularly in women. In contrast, concentrations of highly chlorinated PCBs were strongly inversely associated with abdominal obesity. In a single model including summary measures of the less chlorinated PCBs, highly chlorinated PCBs, and OC pesticides, both the positive associations and inverse associations strengthened. Similar but somewhat weaker associations were seen between POPs and risk of development of abdominal obesity in the prospective analyses.ConclusionUsing both a cross-sectional and a prospective design, low-dose exposure to less chlorinated PCBs, p,p′-DDE, and dioxin, were associated with existence or development of abdominal obesity, while highly chlorinated PCBs had an opposite association in an elderly population, despite the previous observation of higher incident diabetes associated with these same PCBs.  相似文献   

9.
Some persistent organic pollutants (POPs) have been found in human semen but until this point it was unclear whether polybrominated diphenyl ethers (PBDEs) could be detected in human semen. In this study, PBDEs were found for the first time in human semen samples (n = 101) from Taizhou, China. The concentrations of total PBDEs (∑ PBDEs) varied from 15.8 to 86.8 pg/g ww (median = 31.3 pg/g ww) and 53.2 to 121 pg/g ww (median = 72.3 pg/g ww) in semen and blood samples, respectively. The ∑ PBDE level in semen was about two times lower than in human blood, which was different in the distribution in the two matrices from other POPs. A correlation of ∑ PBDE concentration was found between paired semen and in blood. The results suggest that semen could be used to detect PBDE burden in human body as a non-invasive matrix. In addition, the levels of BDE-209 and BDE-153, especially the latter, were much higher in blood than in semen, while the levels of BDE-28, BDE-47 and BDE-99 were comparable in the two matrices, suggesting that low brominated congeners could be more easily transferred to semen than high brominated congeners. Considering different toxicities among the PBDE congeners, it might be more significant to measure PBDEs in semen than in blood for evaluating male reproduction risks of PBDEs.  相似文献   

10.
Per- and polyfluoroalkyl substances (PFASs) are a class of compounds with unique chemical properties that have been shown useful in a wide variety of applications because they provide materials with reduced surface tension and exceptional non-stick properties. PFASs are commonly found in impregnation materials, coatings of papers and textiles, fire-fighting foams, pesticides, and cleaning agents. The potential for human exposure to PFASs is high because of their widespread distribution. The aim of this study was to investigate levels of PFASs in men and women from Sweden and to assess the influence of gender and parity among women. Levels of 13 PFASs were determined in plasma samples collected during 2001–2004 from 1016 (507 women) 70 year-old participants from the population-based Prospective Study of the Vasculature in Uppsala Seniors (PIVUS). The PFASs studied were nine perfluorinated carboxylic acids (PFCAs), four perfluorinated sulfonic acids (PFSAs) and perfluorooctane sulfonamide (PFOSA). In addition, structural isomers of perfluorooctane sulfonic acid (PFOS) were determined in a subset of 398 individuals. The detection rates were high and the majority of the studied compounds were detected in more than 75% of the participants. Levels of the selected analytes were found to be similar to other studies of non-occupationally exposed populations. Gender differences were observed in levels of PFHpA which was higher in men, while PFHxS was higher in women. Parity among women was shown to have a minor effect on PFAS concentrations and we found primi- and multiparous women to have slightly lower levels of PFUnDA when compared to nulliparous women.  相似文献   

11.
Breast milk has been widely used as a bioindicator to assess the extent of human exposure to PBDEs via various exposure routes. In this study, 48 breast milk samples were collected from primiparous women in Shanghai city, and 14 PBDEs congeners (BDE-28, − 47, − 99, − 100, − 153, − 154, − 183, − 196, − 197, − 203, − 206, − 207, − 208, and − 209) were quantified using gas chromatography-electron capture negative ionization-mass spectrometry. The mean concentration of total PBDEs was 8.6 ng/g lipid weight, and ranged from 1.8 to 26.7 ng/g lipid weight. These concentration levels were similar to those reported in Europe and Asia, but one order of magnitude lower than those in North America. The congener profiles in this study exhibited a specific pattern in human milk found worldwide, BDE-153 and BDE-28 accounted for a relatively higher proportion of lower brominated BDEs (from tri- to hepta-BDEs), whereas higher brominated BDEs (from octa- to deca-BDEs) contributed more than 70% of the total PBDEs. The Spearman's correlation coefficient among higher brominated BDEs showed a positive relationship, and concentration levels of higher brominated BDEs were statistically different between office workers and housewives. Due to relatively higher proportion of PBDEs from octa- to deca-BDEs were detected, air inhalation and dust ingestion might be the major exposure routes of higher brominated BDEs. Further research is needed to clarify the major exposure route of higher brominated BDEs to humans.  相似文献   

12.
The formation and environmental release of highly toxic organohalogen compounds associated with informal recycling of waste electric and electronic equipment (e-waste) is a growing problem at e-waste dumps/recycling sites (EWRSs) in many developing countries worldwide. We chose a cross-sectional study design to measure the internal exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) as well as polychlorinated biphenyls (PCBs) of individuals working on one of the largest EWRSs of Africa, located at Agbogbloshie, Accra, Ghana, and in controls from a suburb of Accra without direct exposure to EWRS activities. In whole blood samples of 21 age matched male exposed individuals (mean age: 24.7 years, SD 6.0) and 21 male controls (mean age: 24.4 years, SD 5.7) 17 PCDD/F congeners were determined. Moreover three indicator PCB congeners (#138, #153 and #180) were measured in blood of 39 exposed (mean age: 27.5 years, SD 11.7) and 19 non-exposed (mean age: 26.8 years, SD 9.7) patients. Besides a health examination, biometric and demographic data, residential and occupational history, occupational exposures and working conditions were recorded using a standardized questionnaire. In the exposed group, median PCDD/F-concentrations were 6.18 pg/g lipid base WHO2005-TEq (range: 2.1–42.7) and significantly higher compared to the control group with 4.60 pg/g lipid base WHO2005-TEq (range: 1.6–11.6). Concentrations were different for 2,3,7,8-TetraCDD, three HexaCDD and all 10 PCDF congeners, indicating a combustion pattern. Using a multivariate regression analysis exposure to EWRS activities was the most important determinant for PCDD/F exposure. Median PCB levels for the indicator congeners #138, #153 and #180 were 0.011, 0.019 and 0.008 μg/l whole blood (ranges: 0.002–0.18, 0.003–0.16, 0.002–0.078) in the exposed group and, surprisingly, significantly higher in the controls (0.037, 0.062 and 0.022; ranges: 0.005–0.46, 0.010–0.46, 0.004–0.21). In a multivariate regression approach e-waste related activities had no positive influence on internal PCB exposure, but rather the time living in Accra. The internal PCB exposure is in particular notable for a country where PCBs have historically never been produced or used. The impact of EWRS activities on organohalogen compound exposure of individuals working at and living in the surroundings of the Agbogbloshie EWRS, and the surprisingly high PCB exposure of people living in Accra not involved in e-waste activities require further investigation.  相似文献   

13.
There are only few studies defining persistent organic pollutant (POP) concentrations in various fat compartments from living obese individuals. The present study has therefore determined the concentrations of various classes of organohalogenated compounds, such as dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlordane compounds (CHLs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in visceral fat (VF: n = 52) and subcutaneous abdominal fat (SF: n = 52) samples collected in 2010–2012 from obese individuals in Belgium. Organohalogen compounds were detected in all fat samples in the decreasing order of their concentrations: PCBs > DDTs > HCHs > CHLs > HCB > HBCDs > PBDEs, suggesting that Belgians have been widely exposed to these contaminants. The levels and the patterns of POP distribution in VF and SF tissue depots were not significantly different. Concentrations of PCBs (VF/SF; median: 285/275 ng/g lw) and DDTs (VF/SF; median: 150/155 ng/g lw) were the major POPs in all fat samples. Concerning PCBs, PCB 153 (VF/SF: 27/26%) was the most dominant congener, followed by PCB 180 (VF/SF: 17/18%), PCB 138 (VF/SF: 15/14.5%) and PCB 170 (VF/SF: 8.1/8.4%) to the sum PCBs, respectively. Levels of HBCDs (VF/SF; median: 4.0/3.7 ng/g lw) and PBDEs (VF/SF; median: 2.6/2.7 ng/g lw) were 1–2 orders of magnitude lower than those of PCBs and DDTs. Among PBDEs, BDE 153 (VF/SF: 31/34%) was the dominant congener, followed by BDE 47 (VF/SF: 26/23%), BDE 154 (VF/SF: 16/16%), BDE 100 (VF/SF: 10/11%) and BDE 99 (VF/SF: 9/9%). To our knowledge, this is the first report on HBCD concentrations in Belgian human fat tissues. Total PBDE and HBCD levels in human fat samples could not be correlated with age. In agreement with the literature, a significant correlation (p < 0.05) between age and the concentration of PCBs (r = 0.828), DDTs (r = 0.640), HCHs (r = 0.666), CHLs (r = 0.534) and HCB (r = 0.754), was observed in the present study. Levels of DDTs, HCHs, HCB and CHLs were also significantly correlated to each other, suggesting that they share similar exposure routes. Correlation with computed tomography (CT) scan data revealed that VF and VF/SF ratios are positive for most of the POPs, such as PCBs, PBDEs, p,p′DDE, CHLs, β-HCH, and HCB. To our knowledge, this study is the first to assess the relationship between POP levels in adipose tissue and markers of abdominal adiposity, determined by CT.  相似文献   

14.
Dioxin exposure has experimentally been associated with changes in DNA methylation, an epigenetic change that is associated with disease. The present study aims to investigate if serum levels of dioxin and other persistent environmental pollutants are related to global DNA methylation in a human sample. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (all aged 70), global DNA methylation was measured by the Luminometric Methylation Assay in 524 subjects. Twenty-three different POPs, including 16 PCBs, five pesticides, one dioxin (OCDD) and one brominated flame retardant (BDE47) were analysed by HRGC/HRMS. Ten single nucleotide polymorphisms (SNPs) in the Aryl hydrocarbon (Ah)-receptor were analysed by mini-sequencing. High levels of toxic equivalency (TEQ) for PCBs and dioxin were associated with DNA hypermethylation (p = 0.030). This was mainly attributed to coplanar non-ortho PCBs. While no significant associations were found between DNA methylation and SNPs in the Ah-receptor, an interaction was found between the SNP rs2237297 and TEQ so that TEQ was associated with hypermethylation (p = 0.009) only in subjects with one G-allele (n = 103). Also high levels of the PCB126 congener, the OCDD, and the pesticide metabolite p,p′-DDE were related to DNA hypermethylation (p = 0.01, 0.03 and 0.003, respectively). In conclusion, in a sample of elderly subjects, high TEQ including PCBs and the dioxin OCDD and high serum levels of PCB126, OCDD, and p,p′-DDE were related to global DNA hypermethylation in a cross-sectional analysis.  相似文献   

15.
ObjectivePerfluorooctanoic acid (PFOA) has applications in numerous industrial and consumer products. The widespread prevalence of PFOA in humans demonstrated in recent studies has drawn considerable interest from the public. We aimed to evaluate the exposure of mothers to PFOA and the potential hazards to neonates in a primitive electronic waste recycling area, Guiyu, China, and a control area, Chaonan, China.MethodsOur investigation included analyses of maternal serum samples, health effect examinations, and other relevant factors. Questionnaires were administered and maternal serum samples were collected for 167 pregnant women. Solid phase extraction method was used for all analytical sample preparation, and analyses were completed using high performance liquid chromatography tandem mass spectrometry method.ResultsThe PFOA concentration was higher in maternal serum samples from Guiyu than in samples from Chaonan (median 16.95, range 5.5–58.5 ng mL 1; vs. 8.7, range 4.4–30.0 ng mL 1; P < 0.001). Residence in Guiyu, involvement in e-waste recycling, husband's involvement in e-waste and use of the family residence as workshop were significant factors contributing to PFOA exposure. Maternal PFOA concentrations were significantly different between normal births and adverse birth outcomes including premature delivery, term low birth weight, and stillbirths. After adjusting for potential confounders, PFOA was negatively associated with gestational age [per lg-unit: β =  15.99 days, 95% confidence interval (CI), − 27.72 to − 4.25], birth weight (per lg-unit: β =  267.3 g, 95% CI, − 573.27 to − 37.18), birth length (per lg-unit: β =  1.91 cm, 95% CI, − 3.31 to − 0.52), and Apgar scores (per lg-unit: β =  1.37, 95% CI, − 2.42 to − 0.32), but not associated with ponderal index.ConclusionsMothers from Guiyu were exposed to higher levels of PFOA than those from control areas. Prenatal exposure to PFOA was associated with decreased neonatal physical development and adverse birth outcomes.  相似文献   

16.
BackgroundMaternal exposure to polycyclic aromatic hydrocarbons (PAH) during pregnancy has been associated with reduced fetal growth. However, the role of diet, the main source of PAH exposure among non-smokers, remains uncertain.ObjectiveTo assess associations between maternal exposure to dietary intake of the genotoxic PAH benzo(a)pyrene [B(a)P] during pregnancy and birth weight, exploring potential effect modification by dietary intakes of vitamins C, E and A, hypothesized to influence PAH metabolism.MethodsThis study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Dietary B(a)P and nutrient intakes were estimated based on total consumption obtained from a food frequency questionnaire (FFQ) and estimated based on food composition data. Data on infant birth weight were obtained from the Medical Birth Registry of Norway (MBRN). Multivariate regression was used to assess associations between dietary B(a)P and birth weight, evaluating potential interactions with candidate nutrients.ResultsThe multivariate-adjusted coefficient (95%CI) for birth weight associated with maternal energy-adjusted B(a)P intake was − 20.5 g (− 31.1, − 10.0) in women in the third compared with the first tertile of B(a)P intake. Results were similar after excluding smokers. Significant interactions were found between elevated intakes of vitamin C (> 85 mg/day) and dietary B(a)P during pregnancy for birth weight (P < 0.05), but no interactions were found with other vitamins. The multivariate-adjusted coefficients (95%CI) for birth weight in women in the third compared with the first tertile of B(a)P intake were − 44.4 g (− 76.5, − 12.3) in the group with low vitamin C intakes vs. − 17.6 g (− 29.0, − 6.1) in the high vitamin C intake group.ConclusionThe results suggest that higher prenatal exposure to dietary B(a)P may reduce birth weight. Lowering maternal intake of B(a)P and increasing dietary vitamin C intake during pregnancy may help to reduce any adverse effects of B(a)P on birth weight.  相似文献   

17.
4-Nonylphenol (NP) and bisphenol A (BPA) are phenolic substances used in high volumes by the industry. Studies on cells and in experimental animals have shown that both these compounds can be classified as estrogenic hormone disrupters. Information about the exposure of humans to NP and BPA is still scarce, especially regarding levels in human blood. The first aim of this study was to investigate possible sources of NP and BPA exposure from food, by analyzing the levels of NP and BPA from a Swedish food market basket, based on the Swedish per capita food consumption. A second aim was to investigate blood serum levels of NP and BPA, as well as NP-ethoxylates, among young women in Sweden (n = 100). Moreover, associations between food consumption and blood NP and BPA levels were studied. In food, NP was to some extent found at levels above limit of quantification (LOQ 20 ng/g fresh weight) in fruits, cereal products, vegetables, and potatoes. BPA levels above LOQ (2 ng/g fresh weight) were found in fish, meats, potatoes, and dairy products. The estimated mean intakes per capita were (medium bound) 27 μg NP/day and 3.9 μg BPA/day, showing that food is a source of BPA and NP in the general Swedish population. In blood serum, free NP above limit of detection (LOD 0.5 ng/g) was detected in 46% of the study participants while detectable levels of total NP (LOD 0.8 ng/g) were observed in 43%. The corresponding percentages for BPA were 25% and 22%, respectively. The results indicate that there is a continuous source of exposure to NP and BPA that is high enough for free NP and BPA to be detected in some consumers. Among the participants with quantifiable levels of free and total NP (n = 38), 85% (median, range: 38–112%) of the NP was present as free NP. For BPA 76% (49–109%) was detected as free BPA (n = 15). All women had levels of ethoxylates of NP below LOD (0.1–0.7 ng/g). A significantly higher total consumption of fruits and vegetables was reported in questionnaires by participants with NP levels at or above LOD than among women with levels below LOD. This result is supporting the market basket results of relatively high NP levels in these types of food.  相似文献   

18.
BackgroundBackground exposure to organochlorine (OC) pesticides was recently linked to cognitive impairment and dementia in cross-sectional and case–control studies. This prospective study was performed to evaluate if OC pesticides at baseline are associated with the future risk of cognitive impairment in elderly, with particular focus on weight change.MethodsPlasma concentrations of 3 OC pesticides (p,p′-DDE, trans-nonachlor, and hexachlorobenzene) were measured among 989 men and women aged 70 years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). Cognitive impairment was validated by reviewing medical records. During the ten year follow-up, cognitive impairment was developed in 75 subjects. When weight change from age 70 to 75 was considered in analyses, elderly with incident cases before age 75 were excluded to keep the prospective perspective, leaving 795 study subjects and 44 incident cases.ResultsThe summary measure of 3 OC pesticides predicted the development of cognitive impairment after adjusting for covariates, including weight change. Compared to subjects with OC pesticides < 25th percentile, adjusted hazard ratios (HRs) in those with 25th–<75th and ≥ 75th percentiles were 3.5 (95% confidence interval: 1.5–8.5) and 3.2 (1.1–7.6), respectively (Ptrend = 0.04). Among 506 subjects who maintained or gained body weight, adjusted HRs were 6.9 and 11.6 (1.4–92.6) among the elderly in the 25th–<75th and ≥ 75th percentiles compared to < 25th percentile (Ptrend < 0.01).ConclusionsThis prospective study demonstrates that background exposure to OC pesticides are linked to the risk of developing cognitive impairment in elderly. The role of the chronic exposure to low dose OC pesticides in the development of dementia should be further evaluated in other populations.  相似文献   

19.
This study investigates the influence of biological and environmental factors on the concentrations of perfluoroalkyl acids (PFAAs) in a top predator; the American mink. Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) with C8–C13 perfluorinated carbon chains were analyzed in livers from wild male mink liver (n = 101) from four areas in Sweden representing two inland environments (rural and highly anthropogenic, respectively) and two different coastal environments. Mean PFOS concentrations were 1250 ng/g wet weight and some mink from the urban inland area had among the highest PFOS concentrations ever recorded in mink (up to 21 800 ng/g wet weight). PFBS was detected in 89% of the samples, but in low concentrations (mean 0.6 ng/g ww). There were significant differences in PFAA concentrations between the geographical areas (p < 0.001–0.01). Age, body condition and body weight did not influence the concentrations significantly, but there was a seasonal influence on the concentrations of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) (p < 0.01 and p < 0.05, respectively), with lower concentrations in autumn samples than in samples taken in the winter and spring. It is thus recommended to take possible seasonal differences into account when using mink exposure data. The overall results suggest that the mink is a suitable sentinel species for assessing and monitoring environmental levels of PFAAs.  相似文献   

20.
Harbour seals and harbour porpoises are top predator species from the North Sea, have long life spans and hence, are known to accumulate high levels of anthropogenic contaminants. To gain knowledge about the behaviour of naturally-produced compounds in these marine mammals, the biomagnification of naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was assessed. The biomagnification of MeO-PBDEs (2′-MeO-BDE 68 and 6-MeO-BDE 47) was lower in harbour seals (all biomagnification factors (BMFs) < 1) compared to the same age–gender groups of the harbour porpoises (all BMFs > 1). This may indicate a better metabolic breakdown of MeO-PBDEs in harbour seals, as was previously suggested for polybrominated diphenyl ethers (PBDEs). In both predators, 6-MeO-BDE 47 had the highest concentrations (range: 45–483 ng/g lw and 2–38 ng/g lw for harbour porpoises and seals, respectively) compared to 2′-MeO-BDE 68 (range: 2–28 ng/g lw and 1–6 ng/g lw for harbour porpoises and seals, respectively). In general, the highest concentrations were found in juveniles, suggesting an increased biotransformation capacity with age or the influence of dilution by growth for both species. Here we show that naturally-produced brominated organic compounds can biomagnify and accumulate in North Sea top predators, although to a lesser extent than anthropogenic lipophilic contaminants, such as polychlorinated biphenyls (PCBs) or PBDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号