首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
采用加载絮凝—超滤—反渗透组合工艺处理含大量重金属离子的印制电路板(PCB)电镀废水。考察了絮凝污泥回流比和水力条件对加载絮凝效果的影响,确定了最佳工艺参数:在加碱沉淀pH 10.5、混凝pH 9.0、PAC投加量10 mg/L、PAM投加量1.0 mg/L的条件下,污泥回流比为47%,加碱沉淀、混凝、絮凝的搅拌转速分别为250,150,50 r/min,搅拌时间分别为6,8,4 min。中试结果表明:经加载絮凝预处理后,总铜、总镍和浊度的平均去除率分别为99.4%、99.3%和93.1%;预处理出水经超滤—反渗透系统处理后,出水水质全部达标。  相似文献   

2.
采用混凝—气浮工艺对ABS树脂生产过程中的丁二烯聚合工段和乳液接枝工段混合废水进行预处理,优化了工艺条件。实验结果表明:最佳药剂组合为CaCl2和阳离子型聚丙烯酰胺(FO4440SSH),最佳CaCl2投加量为75 mg/L,最佳FO4440SSH投加量为10 mg/L,最佳废水pH范围为5~7;最优操作条件为以288 r/min的转速搅拌混凝1 min,再以72 r/min的转速搅拌絮凝20 min;混凝阶段的最佳G值为159.9 s-1、GT值为9 594,絮凝阶段的最佳G值为24.5 s-1、GT值为29 400;优化条件下,废水的浊度与COD去除率均可达98%以上。  相似文献   

3.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

4.
采用缺氧—好氧—催化臭氧氧化工艺处理某石化厂的含盐废水。实验结果表明:在进水COD为200~350 mg/L的条件下,经生化处理后的出水COD稳定在50~60 mg/L,COD去除率稳定在75%左右;在臭氧投加量为4.5 g/L、V(催化剂Ⅱ)∶V(废水)=1.5∶1的条件下,进行连续催化臭氧氧化后出水COD稳定在20 mg/L以下,COD去除率大于70%,满足DB 61/224—2011《黄河流域(陕西段)污水综合排放标准》。表征结果显示,催化剂表面含有铜元素,比表面积为250.815 m2/g,吸水率为60.9%,经过滤可去除废水中残留的催化剂。  相似文献   

5.
采用酸析—微电解—Fenton试剂氧化联合工艺预处理苯达松废水。考察了酸析pH、铸铁粉加入量、微电解时间、双氧水加入量、Fenton试剂氧化时间等因素对废水处理效果的影响。实验结果表明:最佳工艺条件为酸析pH 3.0,铸铁粉加入量1.0 g/L,微电解时间2 h,Fenton试剂氧化时间4 h,双氧水加入量25 mL/L;在最佳工艺条件下处理初始COD为22 500 mg/L、BOD5/COD为0.08、色度为2 500倍的苯达松废水,总COD去除率为96.2%,出水COD为858 mg/L,出水色度为150倍,BOD5/COD为0.38;采用微电解—Fenton试剂氧化联合工艺预处理酸析后的苯达松废水,处理效果远高于单独微电解和单独Fenton试剂氧化工艺。  相似文献   

6.
采用臭氧氧化—A/O工艺处理聚乙烯醇(PVA)废水,研究了臭氧氧化时间、臭氧流量以及废水pH等因素对臭氧氧化效果的影响。实验结果表明:当气体臭氧质量浓度为30 mg/L、臭氧氧化时间为45 min、臭氧流量为4 L/min、废水pH为8时,PVA质量浓度从进水的93.2 mg/L降至4.5 mg/L;PVA溶液的BOD5/COD从0.014增加至0.310,可生化性明显改善;臭氧氧化—A/O工艺处理后出水COD降至50 mg/L左右,达到GB 8978—1996《污水综合排放标准》中的一级排放标准;出水PVA质量浓度为1.6 mg/L,明显优于A/O工艺(33.1 mg/L)。  相似文献   

7.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

8.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H2O2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60 ℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

9.
卢钧  陈泉源 《化工环保》2021,41(2):161-167
采用强化混凝和高级氧化法对制药废水生化出水进行深度处理,比较了不同混凝剂、不同氧化方法(包括Na2S2O8氧化、电化学氧化、Fenton/类Fenton氧化)的处理效果。实验结果表明:经聚合硫酸铁与聚丙烯酰胺强化混凝处理后,废水的COD去除率达18.5%;强化混凝与不同氧化方法联用均可使废水脱色至无色,COD去除率达70.1%~92.4%。强化混凝—电化学氧化组合工艺的出水COD为27.1 mg/L,达到GB 8978—1996《污水综合排放标准》一级标准限值要求,且成本较低,适于实际应用。  相似文献   

10.
徐正超  刘阳  王世琦  马聪  方峰 《化工环保》2019,39(4):408-412
以季铵盐改性硅藻土为吸油剂,采用吸附—电化学组合工艺处理拉丝废乳化液,优化了工艺条件。实验结果表明,在乳化液pH为5.0、吸油剂加入量为20 g/L、反应温度为25 ℃的最优条件下吸附除油15 min,然后在清液pH为8.5、阳极电流密度为4 A/dm2的最优条件下电化学反应4 h后,废水无色无味,COD为43 mg/L,ρ(NH3-N)=0,ρ(Cu)= 1.6 mg/L,ρ(Zn)= 3.7 mg/L,浊度为1.1 NTU,达到GB 8978—1996污水综合排放标准。  相似文献   

11.
研究了化学沉淀法和氨基膦酸型螯合树脂吸附法对催化裂化钠碱脱硫液中Ca~(2+)和Mg~(2+)的去除效果。实验结果表明:NaOH沉淀法可有效去除钠碱脱硫液中的Mg~(2+),当溶液pH为12、反应时间为15 min时,Mg~(2+)去除率达91.6%;NaOH-Na_2CO_3联合沉淀法无法去除钠碱脱硫液中的Ca~(2+);经过NaOH溶液有效除Mg~(2+)后的脱硫液再采用氨基膦酸型螯合树脂吸附柱去除其中的Ca~(2+)和Mg~(2+),可使出水硬度小于2 mg/L。提高进水pH、降低进水流量、降低进水硬度均可提高单位体积树脂的处理水量。  相似文献   

12.
以水性油墨废水絮凝污泥为原料、采用一步炭化活化法制备了吸附剂,并将其用于阳离子蓝X-GRRL溶液(300 mg/L)的吸附处理。考察了吸附剂投加量、吸附时间、吸附温度和吸附pH对吸附效果的影响,并对吸附动力学进行了探讨。结果表明:所制得吸附剂的总孔体积为0.5 cm~3/g,平均孔径为7.12 nm;在吸附剂投加量0.6g/L、吸附时间420 min、吸附温度25℃、吸附pH 5.4的条件下,吸附量高达486.21 mg/g,脱色率达97.24%;该吸附剂对于阳离子蓝X-GRRL的吸附过程可用准二级动力学模型和颗粒内扩散效应模型很好地描述。  相似文献   

13.
冯岐  刘德蓉  何芳  任勇  袁涛  熊伟 《化工环保》2018,38(3):317-322
采用电絮凝-过硫酸盐氧化协同工艺处理页岩气压裂返排废水,通过电解过程产生的Fe2+活化过硫酸盐产生强氧化性的硫酸根自由基氧化废水中的有机物,同时Fe2+被氧化成Fe3+进而水解起到絮凝作用。实验结果表明,在电解时间25 min、电流密度41.7 m A/cm~2、电极间距4 cm、搅拌转速100 r/min、废水pH 7.0、过硫酸盐添加量0.006 mol/L的条件下,COD去除率达94.5%,出水BOD_5/COD从0.13增至0.56,电导率从104 mS/m降至71 mS/m,矿化度从16 704 mg/L降至4 065 mg/L,不可滤残渣含量从554 mg/L降至59 mg/L。电絮凝-过硫酸盐氧化协同处理的效果明显优于单独电絮凝和硫酸亚铁活化过硫酸盐氧化工艺,循环伏安测试结果表明其原因是硫酸根自由基的产生,同时溶液的导电性增强,强化了絮凝效果。  相似文献   

14.
采用碱法从天然糯米中提取糯米淀粉(SS),经环氧氯丙烷交联、醚化,邻苯二胺胺化,CS2亲核加成,最终制备出一种新型Pb2+吸附剂——二硫代氨基甲酸盐(DTC)类改性糯米淀粉(DTCS)。在吸附剂加入量2.0 g/L、Pb2+质量浓度30 mg/L的条件下,不同阶段改性产物吸附Pb2+的最佳pH均为7.0,吸附平衡时间为30 min。SS对Pb2+的吸附去除率仅为9.1%,经改性后吸附能力逐步提高,最终产物DTCS对Pb2+的吸附效果最佳,Pb2+去除率高达99.9%,平衡吸附量为14.97 mg/g。DTCS对Pb2+的吸附过程符合准二级吸附动力学模型,以化学吸附为主。  相似文献   

15.
分别采用传统沉淀法和并流加料沉淀法处理含铜锌废水,考察了废水进样速率、废水pH、搅拌速率对重金属离子残留质量浓度的影响。采用FTIR、XRD和SEM表征了所得污泥的物相和形貌。实验结果表明:并流加料沉淀法所得滤液中Zn~(2+)、Cu~(2+)和Al3+的质量浓度远低于传统沉淀法;在废水进样速率1.0 mL/min、废水pH 9、搅拌速率500 r/min的最佳工艺条件下,滤液中Cu~(2+)和Zn~(2+)基本没有残留,Al3+质量浓度仅为0.2 mg/L,达到工业排放标准;所得污泥结晶度良好,为类水滑石Cu_3Zn_3Al_2(OH)_(16)CO_3·4H_2O(PDF#37-0629)结构。  相似文献   

16.
采用水力空化-Fenton氧化联合超声吸附处理煤气化废水,考察了单独Fenton氧化及单独水力空化工艺条件,并对Fenton氧化、水力空化和水力空化-Fenton氧化工艺处理过程进行了动力学初探。实验结果表明:在反应时间60 min、废水pH 3.0、Fe~(2+)加入量900 mg/L、H_2O_2加入量3 600 mg/L、空化压力0.4 MPa的条件下,水力空化-Fenton处理煤气化含酚废水的COD和苯酚去除率分别为93.05%和90.29%;进一步采用超声吸附处理后,出水COD和苯酚质量浓度分别为92.9 mg/L和4.5 mg/L,达到GB 8978—1996《污水综合排放标准》三级指标。  相似文献   

17.
以盐泥为原料,采用氯化铵浸取回收盐泥中的Mg2+,以浸取液和回收的氨反应制取氢氧化镁产品。考察了盐泥浆液固含量、浸取时间、物料比(氯化铵与盐泥中氢氧化镁的摩尔比)等工艺条件对Mg2+浸取率的影响,并以比表面积为考察指标进行正交实验,确定氢氧化镁的最佳制备条件。实验结果表明:在盐泥浆液固含量为248 g/L、浸取时间为100 min、物料比为2.3的条件下,Mg2+浸取率为75.0%;在n(MgCl2):n(NH4Cl)=0.5、氨水浓度3 mol/L、氨水滴加速率 0.8 mL/min、反应温度 90 ℃的最佳条件下,制备的氢氧化镁的比表面积为17.87 m2/g,粒径约为3 μm。该工艺简单可行,为盐泥的综合利用提供了新的思路。  相似文献   

18.
王凡  马梦蝶  王曦  杨明  李登新 《化工环保》2021,41(2):173-178
采用微纳米气液分散体系对天然气汽车尾气中的复合污染物进行氧化脱除。实验结果表明:CH4、NO和SO2的脱除率均随着吸收液中NaCl、十二烷基硫酸钠(SDS)、Fe2+和Mn2+投加量的增加而先升后降,在酸性和碱性条件下均随着pH的增大呈先升后降的趋势;进气CH4、NO、SO2质量浓度为429,267,571 mg/m3时,最佳脱除条件为吸收液pH 6、NaCl投加量0.5 g/L、SDS投加量4 mg/L、Mn2+投加量2.0 mmol/L,在此条件下CH4、NO和SO2的脱除率分别为85.83%、96.00%和100%。机理研究表明:CH4被微纳米气泡产生的自由基氧化成CO、CO2和H2O,NO氧化成NO3-和NO2-,SO2氧化成SO42-;Fe2+和Mn2+作为催化剂诱导微纳米气泡产生较多自由基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号