首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ca(II)在活性污泥生物絮凝中的作用研究   总被引:2,自引:1,他引:1  
采用4个平行的序批式反应器(SBR),研究了进水Ca2+浓度对活性污泥絮体表面特性和结构稳定性的影响,并由此来确定Ca2+在生物絮凝中的作用。结果表明:随着进水Ca2+浓度的增加,污泥中的Ca含量逐渐增大。进水中Ca2+的加入,增大了污泥絮体的粒径和密度,进而改善了污泥的沉降性能;Ca2+的加入,使可供结合的蛋白质数量最高增至近1倍,污泥表面疏水性也相应增强;污泥絮凝性能的改善,主要和可供Ca2+结合的蛋白质含量增加有关,而非多糖;EDTA通过络合污泥絮体中的Ca2+,破坏了由Ca2+架桥形成的污泥絮体结构,这说明Ca2+可通过和胞外聚合物(extracellular polymeric substances, EPS)中的负电官能团架桥来促进污泥絮体的形成并维持絮体结构的稳定性。  相似文献   

2.
高铁酸钾预处理对活性污泥脱水性能的影响   总被引:1,自引:0,他引:1  
通过投入不同剂量的高铁酸钾于剩余活性污泥中,研究其对污泥絮体性质和脱水性能的影响作用。污泥絮体性质的研究包括絮体粒径的变化以及污泥EPS含量的变化。脱水性能的研究包括过滤脱水性能(以CST表征)以及脱水程度(离心泥饼含固率)。实验结果表明,高铁酸钾的强氧化性可以破坏污泥絮体结构,提高污泥的机械脱水程度;但同时污泥EPS含量增加,对污泥过滤脱水性能有负面影响。高铁酸钾氧化分解生成的Fe(OH)3具有絮凝能力,可以使污泥颗粒重新絮凝;而其混凝作用可以破坏污泥细胞的稳定性,提高污泥的沉降性能。  相似文献   

3.
为解决电絮凝法调理污泥期间电场无法有效破解污泥絮体、改善污泥脱水问题,分别将电絮凝与尺寸稳定阳极(DSA,Dimensionally-stable anodes)电极、H2O2进行耦合,比较和分析2种耦合工艺对污泥过滤性能、絮体破解程度、胞外聚合物(EPS)组分改变和污泥脱水性能的差异。结果表明,电絮凝耦合H2O2形成的间接氧化体系中,由于电致·OH在非均相体系中能无选择性地破坏污泥絮体、破解污泥细胞并降解胞外聚合物(EPS),从而促使阳极释放的铁离子通过吸附架桥、网捕等作用与絮体碎片和EPS片段重聚并沉淀,使15 min内污泥毛细吸水时间(CST)和污泥含水率(MC)分别下降了73.9%和31.4%;然而电絮凝耦合DSA直接氧化法同期的污泥CST和MC仅分别下降了64.9%和26.4%。此外,间接氧化法可以同时降解松散结合层(LB-EPS)和紧密结合层(TB-EPS),破坏EPS蛋白质亲水基团与水的作用力,并改善传统电化学法主要降解LB-EPS的不足,实现了提高电化学方法在同步污泥破解与沉降脱水方...  相似文献   

4.
为了揭示不同污泥龄活性污泥的絮凝特性及作用机制,采用序批式反应器,考察污泥龄(solid retention time,SRT)对絮体EPS(extra-micro colony polymeric substances,EMPS)和菌胶团EPS(extra-cellular polymeric substances,ECPS)2种EPS组分的影响,通过扩展的DLVO理论和EPS组分解析不同污泥龄的絮凝性能。研究结果表明,随着SRT的增大,活性污泥的相互作用能曲线存在明显的势垒和势垒值逐渐减少,EMPS和ECPS含量逐渐减少,且相对于ECPS的变化,EMPS含量随泥龄的变化更加明显,其中蛋白质与腐殖质含量逐渐降低,污泥絮凝性能变好。这表明,较高的污泥相互作用能势垒和EMPS组分含量是污泥絮凝性能低的内在机制,且EMPS中蛋白质和腐殖质含量的变化是不同污泥龄污泥絮凝性能差异的主要原因。  相似文献   

5.
研究了软水树脂再生废液和热处理对印染污泥脱水性能的影响。以污泥比阻(SRF)和毛细吸水时间(CST)作为评价污泥脱水性能的指标,通过测定污泥Zeta电位和FT-IR光谱来阐述污泥脱水机理。实验确定的最佳污泥脱水条件为:加热温度70℃,100 m L污泥添加30 m L软水树脂再生废液(软水树脂再生废液中Ca2+的量约为干污泥质量的11.9%),污泥比阻由2.52×1011m·kg~(-1)降至0.85×1011m·kg~(-1),污泥CST由15.2 s降至8.9 s。随着Ca2+浓度的增加,可使污泥表面电荷明显减少,较高的温度可能会加强这种影响。FT-IR光谱表明,Ca2+能与絮体的O—H官能团、蛋白质等相互作用。实验还对软水树脂再生废液与常用阳离子絮凝剂Fe Cl3和Al2(SO4)3的絮凝效果进行了比较。研究证明软水树脂再生废液可作为絮凝剂使用,是一种经济有效的改善污泥脱水性能的方法,且实现了废物利用。  相似文献   

6.
利用SBR,以普通活性污泥为种泥,在好氧条件下(DO2 mg/L)研究了Ca2+强化短程硝化颗粒污泥培养的特性。结果表明,通过将进水氨氮浓度由110 mg/L升高至300 mg/L后30 d,出水亚硝酸盐累积率稳定在80%~85%,成功实现了短程硝化。通过添加50 mg/L Ca Cl2,污泥表面Zeta电位由-21.4 m V升高至-13.6 m V,胞外蛋白质的含量由26.82 mg/g升至51.99 mg/g,90 d后,粒径大于300μm的污泥体积分数约占68%,培养了短程硝化颗粒污泥。Zeta电位的升高减小了污泥间的静电斥力,增多的胞外蛋白在Ca2+架桥作用下可相互结合形成高分子生物聚合体,二者的共同作用是Ca2+强化短程硝化颗粒污泥形成的原因。  相似文献   

7.
通过在5组相同型号的SBBR反应器(A、B、C、D和E)内调节进水中的Ca2+含量,研究Ca2+在净水生物膜团聚体培养过程的作用影响.结果表明,进水Ca2+投加浓度为25 mg/L时驯化培养的生物膜团聚体具有较好的抗挤压能力,抗压强度达到了22 N/cm2,密度为1.059 g/cm3,活性微生物的百分含量达到了86.90%,远远高于一般污泥团聚体中的微生物含量.分析运行效果,反应器C和D的生物膜团聚体通过29 d的驯化培养就达到了一个比较好的净水效果,并能维持稳定状态,相比于一般生物膜反应器的驯化时间有所缩短.不同进水负荷条件下氮氮的去除率变化表明,反应器C和D针对不同进水负荷表现出来的适应效果明显优于其他反应器.  相似文献   

8.
为了考察絮凝污泥与剩余活性污泥混合中温(35℃)厌氧消化效果,分析了不同混合比例、不同投配率下的总化学需氧量(TCOD)去除率、挥发性固体(VS)降解效果,通过p H值与氨氮浓度的变化来分析各反应器的稳定性。结果表明:污泥混合后消化效果明显得到提高,且污泥消化效率随着投配率的增加先提高后下降。5%投配率时,絮凝污泥/剩余污泥(VS比)为1∶2时厌氧消化效果最好,TCOD去除率达到47.8%,VS降解率达到46.8%,分解单位VS产气量达到了435 m L/g,p H值与氨氮浓度分别保持在7.4和269 mg/L左右,混合污泥厌氧消化系统较稳定。这说明与剩余污泥的混合消化能有效提高絮凝污泥的厌氧消化性能。污泥絮体的显微分析表明:厌氧消化过程中絮体面积百分比逐步减小,污泥结构逐步解体,可以解释污泥消化的微观过程。  相似文献   

9.
含水率是影响污泥处置效果与成本的重要因素。通过污泥含水率、毛细吸水时间(CST)、污泥比阻(SRF)、污泥上清液中的蛋白质、多糖、DNA含量等指标,研究了类芬顿试剂耦合超声对活性污泥脱水性能的影响。结果表明,类芬顿试剂中H2O2的投加量为90 mg/g,Fe3+的投加量为10 mg/g,超声3 min,此时污泥的毛细吸水时间为29.8 s,污泥比阻为2.07×1011s2/g,污泥的含水率降至73.9%。类芬顿试剂耦合超声能有效破坏污泥絮体结构,增加上清液的蛋白质、多糖、DNA含量。  相似文献   

10.
废水处理工艺中抗生素类污染物的存在可能会对生物处理过程产生长期而深远的影响,为探明此类污染物对废水生物处理主体活性污泥性能等方面的影响,采用间歇培养法研究了活性污泥法处理污水时,抗生素类污染物的存在对活性污泥性能如胞外聚合物(EPS)、污染物处理能力、脱氢酶活性和群落结构的影响。结果表明,抗生素的存在会导致活性污泥的胞外聚合物总量及其主要组分蛋白质和多糖增加,以产生保护屏障;且由于污泥絮体解体,细胞破裂导致EPS中DNA和色氨酸含量增加。同时,由于蛋白质大量增加引起的表面负电荷的增加,使污泥疏水性增强,絮凝性能恶化;污泥絮体解体导致污泥颗粒变小,SVI也随之下降;在活性污泥脱氢酶活性急剧下降的同时,出水TOC迅速升高。此外,抗生素类污染物在抑制活性污泥中大部分细菌的同时,对部分菌群也有刺激生长作用,最终导致活性污泥生物群落结构的改变。四环素类抗生素对活性污泥的EPS和絮凝沉降性能的影响大于磺胺类,而对污水处理能力和群落结构的影响则不如磺胺类。抗生素类污染物的长期存在会对活性污泥沉降性能、絮凝性能、脱氢酶活性以及活性污泥群落结构等产生一系列负面影响,进而影响污染物去除效果,导致出水水质恶化。  相似文献   

11.
废水处理工艺中抗生素类污染物的存在可能会对生物处理过程产生长期而深远的影响,为探明此类污染物对废水生物处理主体活性污泥性能等方面的影响,采用间歇培养法研究了活性污泥法处理污水时,抗生素类污染物的存在对活性污泥性能如胞外聚合物(EPS)、污染物处理能力、脱氢酶活性和群落结构的影响。结果表明,抗生素的存在会导致活性污泥的胞外聚合物总量及其主要组分蛋白质和多糖增加,以产生保护屏障;且由于污泥絮体解体,细胞破裂导致EPS中DNA和色氨酸含量增加。同时,由于蛋白质大量增加引起的表面负电荷的增加,使污泥疏水性增强,絮凝性能恶化;污泥絮体解体导致污泥颗粒变小,SVI也随之下降;在活性污泥脱氢酶活性急剧下降的同时,出水TOC迅速升高。此外,抗生素类污染物在抑制活性污泥中大部分细菌的同时,对部分菌群也有刺激生长作用,最终导致活性污泥生物群落结构的改变。四环素类抗生素对活性污泥的EPS和絮凝沉降性能的影响大于磺胺类,而对污水处理能力和群落结构的影响则不如磺胺类。抗生素类污染物的长期存在会对活性污泥沉降性能、絮凝性能、脱氢酶活性以及活性污泥群落结构等产生一系列负面影响,进而影响污染物去除效果,导致出水水质恶化。  相似文献   

12.
利用一种新型静态序批式蠕虫生物反应器处理剩余污泥,另设一个未加蠕虫的反应器作为对照。通过对比分析2个反应器中污泥的比减量速率、沉降性能、脱水性能和比好氧速率来研究蠕虫捕食对污泥性质的影响。实验结果表明,蠕虫具有良好的污泥减量效果,蠕虫加入后可使污泥比减量速率增加(0.15±0.02)mg/(mg·d)。蠕虫作用后污泥沉降性能明显改善,污泥容积指数(SVI)降低28.9%,胞外聚合物(EPS)含量减少和污泥絮体结构变得更加密实规则是污泥沉降性能得到改善的重要原因。蠕虫捕食后污泥脱水性能变差,污泥标准化毛细吸水时间和比阻分别增大2.45倍和1.16倍,推测主要是由污泥絮体平均粒径减小造成的。另外,蠕虫的存在会降低污泥的微生物活性,异养细菌、氨氧化细菌和亚硝酸盐氧化细菌的比好氧速率分别降低7.09%、7.84%和8.29%。  相似文献   

13.
新型悬浮填料澄清池中填料对澄清作用的影响初探   总被引:2,自引:0,他引:2  
为考察可取代传统二沉池的新型悬浮填料澄清池技术的原理及关键参数,小试试验研究了填料对新型悬浮填料澄清池固液分离过程中附着污泥形成及其絮凝性能的影响,并对填料在澄清中的作用机理进行了探讨。结果表明,当泥水界面上升至填料区后,可以形成较悬浮污泥更加致密稳定的附着污泥区,并形成孔道流,强化了对混合液中污泥颗粒的絮凝效果;填料区可以捕捉去除从悬浮污泥区中“逃逸”的微小污泥絮体,并降低出水浊度,有效地保证了出水水质的稳定性。填料的存在发挥了强大的整流作用,降低了雷诺数Re,提高了弗汝德数Fr,从而改善了污泥絮凝的水力条件,提高了澄清能力。  相似文献   

14.
在升流式厌氧反应器中,分别以模拟废水和最优进水浓度渗滤液持续进水,探讨COD、NH+4-N和SO2-4浓度对反应器内颗粒污泥的稳定性的影响。结果表明,按照优化浓度进水,可以在一定程度上提高了厌氧生物处理效率,COD、NH+4-N和SO2-4去除率分别约为60%、11%和42%。渗滤液中微量元素(如Fe、Co和Ni等)有利于提高污泥浓度,增大反应器内生物量。改变垃圾渗滤液进水的COD、NH+4-N和SO2-4浓度,使得颗粒污泥多处于0.9~1.6 mm之间,具有高传质效率和不易破碎的特性。污泥颗粒的沉降速度保持在28.52~67.87 m·h-1之间,属于沉降性能良好的污泥。以最优进水浓度渗滤液为进水条件的反应器内的颗粒污泥浓度、粒径和沉降速度都要比模拟废水组更好,说明渗滤液中的微量元素存在,有利于颗粒污泥的稳定。  相似文献   

15.
共存物质对重金属絮凝剂MCC除镉性能的影响   总被引:1,自引:0,他引:1  
为进一步拓展天然高分子絮凝剂壳聚糖的应用范围,以壳聚糖、L-半胱氨酸为原料,通过酰胺化反应制备一种具有重金属捕集功能的高分子重金属絮凝剂-2-氨基-3-巯基丙酰壳聚糖(MCC),研究了水体中常见的阴阳离子、有机配位剂及浊度对MCC除镉性能的影响,探讨了絮体形貌与絮体分形维数及絮凝除镉效果间的关系。结果表明,Na+、Cl-、NO-3、F-、SO2-4的存在对MCC除Cd2+均有促进作用,Ca2+表现为明显的抑制作用;低浓度的EDTA对除镉有促进作用,随着EDTA浓度的增大,逐渐转为抑制作用;低浓度的腐殖酸对MCC去除Cd2+有显著的促进作用;在一定范围内,浊度可促进MCC对Cd2+的去除;絮体间空隙越多,絮体分形维数越小,除镉效果越好。  相似文献   

16.
活性污泥法处理高钙废水中污泥特性的变化   总被引:3,自引:0,他引:3  
通过单级SBR法处理模拟高钙废水,研究了活性污泥法处理高钙废水的过程中钙离子对COD,MLVSS,MLSS,SVI,污泥增长速率,污泥形态结构及生物相的影响,揭示活性污泥法处理高钙废水的过程中污泥量巨大的原因。采用逐步增加钙离子浓度的方法,检测到在污泥培养期([Ca2+]=0 mg/L),COD去除率为98.1%,MLVSS和MLSS稳定在4 900~5 500mg/L,污泥增长速率为67 mg/(L·d),SVI为55~60 mL/g;在驯化处理期([Ca2+]=120~2 400 mg/L),COD去除率降至87.37%,MLVSS降至2 500 mg/L,MLSS增加至19 300 mg/L,污泥增长速率为212.31 mg/(L·d),SVI降至25 mL/g;在冲击期([Ca2+]=4 000 mg/L),COD去除率降至69.23%,MLVSS降至1 600 mg/L,MLSS迅速增加至24 200 mg/L,污泥增长速率为816.67 mg/(L·d),SVI降至14 mL/g。经显微镜观察发现,污泥絮体由松散变得密实,生物相由钟虫等指示性微生物变为不适应环境的胞囊结构。结果表明,随Ca2+浓度的增加,COD去除率下降,MLSS迅速增加,MLVSS和SVI急剧缩小,说明活性污泥中的活性微生物逐渐减少,而无机物组分逐渐增多;钙离子的加入促使系统碳酸平衡向右移动,使离子状态的钙大部分转化为难降解的碳酸盐,并附着于污泥絮体上,污泥绒粒被压缩,使污泥颗粒密实度及MLSS迅速增加,导致污泥排放量巨大。  相似文献   

17.
通过高岭土烧杯实验表征了P(CMTC-AM-DMC)的絮凝效率,考察了絮凝时间、介质酸度以及搅拌强度等因素对絮凝性能的影响,并借助絮凝-解絮凝-再絮凝过程中絮体的形态变化分析该絮凝剂的絮凝机理。结果表明:p H=6~8时,在150 r/min下搅拌20 min,絮凝效率大于90%;P(CMTC-AM-DMC)的絮凝效率及絮体沉降速度随搅拌强度增大而增大;300 r/min下搅拌5 min时,絮体沉降速度可达16 mm/s,继续增大搅拌速度,达到400 r/min时,絮凝效率在5 min内即可达到100%。P(CMTC-AM-DMC)絮体化程度较高,在高强度搅拌下破碎后,可迅速聚集恢复至初始状态,并迅速下沉,实现再絮凝。该絮凝剂在不同的p H下表现出不同的絮凝机理,p H=6时,借助电性中和、吸附架桥作用,絮凝效率较高,且絮体沉降较快;p H=10~12时,絮体沉降相对较慢,絮凝效率主要为颗粒卷扫的贡献。  相似文献   

18.
为了解不同生物营养物处理(BNR)工艺剩余污泥性质差异及其中温水解特性,采用序批式实验研究了来源于Orbal氧化沟(OD)和倒置A2/O工艺剩余污泥在中温水解过程中污泥浓度、营养物释放、污泥粒径、污泥絮凝性、污泥比阻及污泥胞外聚合物(EPS)的历时变化。结果表明,相同泥龄(约18d)条件下,OrbalOD剩余污泥氮含量较高,倒置A2/O剩余污泥磷含量较高,两者VSS/SS均低于0.6,导致中温水解过程污泥减量空间有限、氮磷释放速率不同。此外,尽管倒置A2/O工艺剩余污泥絮体尺寸及絮凝能力明显大于OrbalOD工艺剩余污泥的对应值,但两污泥比阻相近。中温水解过程中,两污泥絮体的尺寸均变小、絮凝能力均降低、比阻均增高;两者的胞外聚合物均呈现增高再降低趋势,且蛋白质均占EPS质量的75%以上,为主要的胞外物质。  相似文献   

19.
以消化污泥为研究对象,研究了Fe~(2+)浓度、pH和离子强度等因素对Fe~(2+)促进消化污泥凝聚性能的影响,采用扩展的DLVO理论(EDLVO)探讨了污泥絮体凝聚过程中结合能的变化特征,并对典型条件下各层胞外聚合物(EPS)的三维荧光谱图(EEM)进行了分析。结果表明:Fe~(2+)促进消化污泥凝聚的最佳化学条件为Fe~(2+)浓度50 mmol·L~(-1),pH=7.57(原始值),离子强度0.01 mol·L~(-1)。在最佳Fe~(2+)浓度或pH下,Fe~(2+)促进污泥凝聚的主要作用为:增大Zeta电位、提高絮体粒径和密实程度、增强疏水性和降低污泥絮体间的能垒;在最佳离子强度下,提高絮体粒径和密实程度是促进污泥凝聚的主要作用;离子强度的增加并未降低污泥位能曲线的能垒。EEM证明,Fe~(2+)主要与污泥EPS中slime层结合以促进污泥凝聚,主要结合物为蛋白质A、可见富里酸和紫外富里酸。  相似文献   

20.
pH对活性污泥表面特性和形态结构的影响   总被引:6,自引:1,他引:5  
采用4个平行的序批式反应器,研究了不同pH下活性污泥絮体表面特性和形态结构的变化.结果表明:酸性条件下(pH=4.0,5.5)污泥产生的胞外聚合物总量较多,其中多糖和蛋白质的含量远大于中性(pH=7.0)和偏碱性条件(pH=9.0).污泥表面Zeta电位随pH的升岛而降低;pH对污泥相对疏水性的影响规律并不明显,EPS组成比例较EPS总量本身更易影响污泥表面相对疏水性;此外,在酸性条件下,丝状菌大量生长,导致污泥絮体的平均粒径增大,并且呈现双峰粒径分布,絮体分形维数较低,结构松散;在中性条件下,无明显丝状菌牛长,絮体平均粒径减小,分形维数较高,结构致密;偏碱性条件下,虽然没有出现大量丝状菌,但絮体平均粒径较中性条件略有增大,分形维数相应减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号