首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycling of plastic materials is a rapidly developing discipline because of environmental awareness, the need to conserve materials and energy, and the growing demand to increase the production economy. The main problem in plastics recovery and recycling is related to the variety of plastic wastes, even if selective collection occurs. Therefore, plastic materials can be recycled either as mixtures or as single types, separating the different typologies by their physical (size, specific mass, etc.) and/or chemical properties. However, separation of plastics in single typologies by traditional processes and devices is difficult due to their typical low variability in properties. This paper presents a new research development for recycling industry: the Multidune separator. This is a device constructed from a sequence of parallel semi-cylindrical tubes of transparent plastic welded together in a plane. The lower half is shifted laterally and then fixed relative to the upper half. Flow is then induced in the lateral direction normal to the axis of the tubes, creating a main flow channel and two recirculation zones. This apparatus creates a differential transport of particles of low specific mass, near to 1g/cm(3), allowing their separation. The flow field in the Multidune separator is studied via Particle Tracking Velocimetry (PTV). Eulerian analysis of the data is performed to gather information about the fluid-dynamics features established by different hydraulic heads at the inlet of the Multidune. Preliminary tests on monomaterial samples have been performed, varying several operative parameters to determine the best set of values. Therefore, separation tests have been executed on composite samples, obtaining satisfactory results in terms of plastic separation feasibility.  相似文献   

2.

The paper focuses on current mechanical waste processing technologies and out-of-the-box processes linked to the processing of coal and mineral resources, to ensure high-quality feedstock recycling of polyolefin-rich post-consumer plastic fractions. Moreover, the study aims to provide the basis for the technical and economic feasibility of the chemical recycling route of this plastic fraction. When evaluating common mechanical processes, either dry or wet ones, sink–float separation in a cylindrical centrifugal force separator achieves the best results. It combines the advantages of a simple, robust apparatus of low complexity and high capacity with selective separation through the accelerated settling of particles in the centrifugal field. Furthermore, the disconnection of the separation medium feed from the solid input increases residence times. Based on the above findings, a pilot-scale plant was constructed which consists of a centrifugal force separator and a hydro jig for the pre-separation of heavy waste components. Several test campaigns were conducted to separate polyolefins from various waste fractions. Two-stage processing in the centrifugal force separator rendered almost 90 wt% of polyolefin content in the produced lightweight fraction and of polyolefin recovery. One-stage processing, on the other hand, resulted in reduced polyolefin content in the lightweight fraction.

  相似文献   

3.
The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction.  相似文献   

4.
The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in the floated product.  相似文献   

5.
Application of fluidization to separate packaging waste plastics   总被引:1,自引:0,他引:1  
The objective of the experimental work described in this paper is the study of the separation of PS (polystyrene) from PET (polyethylene terephthalate) and PVC (polyvinyl chloride) from drop-off points using a fluidized bed separator. This is a low-cost process commonly used in the hydro-classification of mineral ores. Firstly, experimental tests were carried out with artificial granulated samples with different grain sizes, types and sources of plastic ("separability tests"). The particle settling velocities were determined under different operating conditions. Then, based on the results, the laboratory tests continued with real mixtures of waste plastics ("separation tests") and the efficiency of the process was evaluated. From a PET-rich mixture, a concentrate of PS with a 75% grade in PS was produced while the underflow was quite clear from PS (grade less than 0.5% in PS).  相似文献   

6.
A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 ± 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation.  相似文献   

7.
The progress of the technology is directly related to the growth of production and consumption of electrical/electronics equipment, especially of personal computers. This type of equipment has a relatively short average lifetime, 2-3 years. The amount of defective or obsolete equipment has been increasing substantially; consequently its disposition and/or recycling should be studied. In this work, printed circuit boards, which are used in personal computers, were studied in order to recover the metals in the circuit boards through mechanical processing, such as crushing, screening, as well as magnetic and electrostatic separation. The results obtained demonstrate the feasibility of using these processes to separate metal fractions from polymers and ceramics, and that it is possible to obtain a fraction concentrated in metals containing more than 50% on average of copper, 24% of tin and 8% of lead.  相似文献   

8.
Selective surface modification of polyvinyl chloride (PVC) by ozonation was evaluated to facilitate the separation of PVC from other heavy plastics with almost the same density as PVC, especially polyethylene terephthalate (PET), by the froth flotation process. The optimum froth flotation conditions were investigated, and it was found that at 40°C, 90% of PVC and PET plastics floated. The bubble size became larger and the area covered with bubbles on the plastic surface was reduced with increasing temperature. Optimum PVC separation was achieved with the flotation solution at 40°C and mixing at 180–200 rpm, even for sheet samples 10 mm in size. Combined treatment by ozonation and froth flotation is a simple, effective, and inexpensive method for PVC separation from waste plastics.  相似文献   

9.
Cylindrical cyclone media separators using a suspended calcite separation media simulating industrial scale operations are demonstrated to effectively separate a wide variety of forms and a greater range of particle sizes of plastics by density than presently recycled. Purities of plastic products and recoveries obtained from mixed plastic wastes are comparable to those reported for established separations. Products of ≈100% purity with recoveries of >99% were obtained for high density fractions and >98% purities and recoveries for the low density fractions. Cyclonic centrifugal forces and/or the fine particle size of the separation media appear to minimize hydroscopic and particle shape effects.A mathematical model is proposed for defining plastic waste feed rates and treatable particle size ranges for the LARCODEMS media separator.Waste plastic separations yielded Ecart probable (Ep) values ?0.024 for a water only separation media. The Ep for 1.1 g cm?3 separation medias was <0.032 with minimal to no variation in values for 1–8 mm particle sizes. Variation in the quality of separations is shown to be minimal with <72 μm, <45 μm and <2 μm media particle sizes. Media density offset created varied according to particle size.  相似文献   

10.
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination.  相似文献   

11.
More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle.Both polyethylene terephthalate (PET) and PVC have densities of 1.30–1.35 g/cm3 and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity.The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.  相似文献   

12.
Recycling of plastics is a big issue in terms of environmental sustainability and of waste management. The development of proper technologies for plastic recycling is recognised as a priority. To achieve this aim, the technologies applied in mineral processing can be adapted to recycling systems. In particular, the improvement of comminution technologies is one of the main actions to improve the quality of recycled plastics. The aim of this work is to point out suitable comminution processes for different types of plastic waste. Laboratory comminution tests have been carried out under different conditions of temperature and sample pre-conditioning adopting as refrigerant agents CO2 and liquid nitrogen. The temperature has been monitored by thermocouples placed in the milling chamber. Also different internal mill screens have been adopted. A proper procedure has been set up in order to obtain a selective comminution and a size reduction suitable for further separation treatment. Tests have been performed on plastics coming from medical plastic waste and from a plant for spent lead batteries recycling. Results coming from different mill devices have been compared taking into consideration different indexes for representative size distributions. The results of the performed tests show as cryo-comminution improves the effectiveness of size reduction of plastics, promotes liberation of constituents and increases specific surface size of comminuted particles in comparison to a comminution process carried out at room temperature.  相似文献   

13.
Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity.The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency.  相似文献   

14.
Flame treatment has been used for many years to modify the surface of plastics to allow coatings to be added. The effect of the treatment is to produce hydrophilic species on the surface of the plastic making it water-wettable. The production of hydrophilic plastic surfaces is also required in the selective separation of plastics by froth flotation. For the process to be selective one plastic must be rendered hydrophilic while another remains hydrophobic. In this study the potential for separation of PVC and PET has been investigated. Flame treatment was shown to be very effective in producing a hydrophilic surface on both plastics, although the process was not selective under the conditions investigated. Raising the temperature of the plastics above their softening point produced a hydrophobic recovery. As the softening point of PVC was significantly lower than for PET it was possible to produce a significant difference in hydrophobicity, as judged using contact angle measurement. When immersed in water the contact angle of the PVC was found to be strongly dependent on the pH. Good separation efficiency of the two plastics was achieved by froth flotation from pH 4 to 9. One particular advantage of the technique is that no chemical reagents may be required in the flotation stage. The practicalities of designing a flake treatment system however have to be addressed before considering it to be a viable industrial process.  相似文献   

15.
Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.  相似文献   

16.
Wet gravity separation technique has been regularly practiced to separate the polypropylene (PP) and polyethylene (PE) (light plastic films) from chlorinated plastic films (CP films) (heavy plastic films). The CP films including poly vinyl chloride (PVC) and poly vinylidene chloride (PVDC) would float in water even though its density is more than 1.0 g/cm3. This is because films are twisted in which air is sometimes entrapped inside the twisted CP films in real existing recycling plant. The present research improves the current process in separating the PP and PE from plastic packaging waste (PPW), by reducing entrapped air and by increasing the hydrophilicity of the CP films surface with ozonation. The present research also measures the hydrophilicity of the CP films.In ozonation process mixing of artificial films up to 10 min reduces the contact angle from 78° to 62°, and also increases the hydrophilicity of CP films. The previous studies also performed show that the artificial PVDC films easily settle down by the same. The effect of ozonation after the wet gravity separation on light PPW films obtained from an actual PPW recycling plant was also evaluated. Although actual light PPW films contained 1.3% of CP films however in present case all the CP films were removed from the PPW films as a settled fraction in the combination process of ozonation and wet gravity separation. The combination process of ozonation and wet gravity separation is the more beneficial process in recovering of high purity PP and PE films from the PPW films.  相似文献   

17.
In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW.  相似文献   

18.
This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm3 and floated in water even though the true density was more than 1.0 g/cm3. However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm3, whereas that of chlorinated plastic films was kept less than 1.0 g/cm3. The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.  相似文献   

19.
The popularization of mobile phones, combined with a technological evolution, means a large number of scrap and obsolete equipment are discarded every year, thereby causing economic losses and environmental pollution. In the present study, the printed wiring boards scrap of mobile phones were characterized in order to recycle some of the device components, using techniques of mechanical processing, hydrometallurgy and electrometallurgy. The use of the techniques of mechanical processing (milling, particle size classification, magnetic and electrostatic separation) was an efficient alternative to obtain a concentrated fraction (mainly iron in the magnetic fraction and copper in the conductive fraction) and another fraction containing polymers and ceramics. At the end of mechanical processing, a concentrated fraction of metals could be obtained with an average concentration of 60% copper. This concentrated fraction in metals was dissolved in aqua regia and sent to electrowinning to recover 92% of the dissolved copper. The obtained cathodes have a copper content above 95%, which demonstrates the technical feasibility of recovery of copper using the techniques of mechanical processing, hydrometallurgy and electrometallurgy.  相似文献   

20.
Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号