首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Climate change driven ocean acidification and hypercapnia may have a negative impact on fertilization in marine organisms because of the narcotic effect these stressors exert on sperm. In contrast, warmer, less viscous water may have a positive influence on sperm swimming speed and so ocean warming may enhance fertilization. To address questions on future vulnerabilities we examined the interactive effects of near-future ocean warming and ocean acidification/hypercapnia on fertilization in intertidal and shallow subtidal echinoids (Heliocidaris erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii), an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata). Batches of eggs from multiple females were fertilized by sperm from multiple males in all combinations of three temperature and three \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} treatments. Experiments were placed in the setting of projected near-future conditions for southeast Australia, an ocean change hot spot. There was no significant effect of warming and acidification on the percentage of fertilization. These results indicate that fertilization in these species is robust to temperature and \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} fluctuation. This may reflect adaptation to the marked fluctuation in temperature and pH that characterises their shallow water coastal habitats. Efforts to identify potential impacts of ocean change to the life histories of coastal marine invertebrates are best to focus on more vulnerable embryonic and larval stages because of their long time in the water column where seawater chemistry and temperature have a major impact on development.  相似文献   

2.
Ocean warming and acidification are co-occurring stressors likely to affect marine biota through climate-driven change to the ocean. We investigated the effects of increased temperature and lowered pH, solely and in combination, on the growth of the endemic Australian bryozoan, Celleporaria nodulosa. Two temperatures and three pH levels were fully crossed in experimental treatments performed in winter 2008 (August) and summer 2009 (February/March). Fragments of C. nodulosa colonies (clones) were collected from Coffs Harbour, NSW, Australia, (30°18′S, 153°09′E) and elongation of colonies was assessed periodically over a 12-day incubation period. Lowered pH in winter significantly decreased growth. Elevated temperatures during the summer significantly impeded the growth of bryozoan colonies, possibly masking the effect of ocean acidification and discovering a maximal thermal tolerance at around 27 °C for C. nodulosa. The effects of decreased pH and increased temperature may be seasonally dependent and particularly acute during the summer months. Thermal stress may in fact be the initial stressor before ocean acidification, negatively affecting organisms in such a way that they are unable to survive before feeling the effects of ocean acidification.  相似文献   

3.
We investigated the effect of different levels of hypercapnia-induced acidification (pH = 7.96, 7.31, 6.74 and 6.05) on the extracellular acid base balance of a shallow-water crustacean, the velvet swimming crab Necora puber over a period of 16 days. Any extracellular acidosis incurred was completely compensated by an increase in bicarbonate. Bicarbonate was partly, but not wholly, supplied by dissolution of the exoskeleton. This compensation was sustained for 16 days under all experimental treatments with two exceptions. First there was some evidence of extracellular acidosis in crabs after 16 days at pH = 6.74. Second at the lowest environmental pH (6.05) there was a marked uncompensated acidosis after 24 h. Necora puber appears less sensitive to low pH than many other species examined acutely. However, local acidification as a result of ocean CO2 dispersal or leakage from geological sequestration is likely to compromise even this species.  相似文献   

4.
Ocean acidification, or the lowering of seawater pH, is caused by sequestration of atmospheric CO2 into the oceans. This study investigated the effects of present-day pH 8.0, predicted ocean surface pH for the years 2100 and 2300 (pH 7.7 and pH 7.3, respectively) and an extreme pH (pH 7.0) on fertilisation and embryogenesis in the Antarctic nemertean worm Parborlasia corrugatus and sea urchin Sterechinus neumayeri. Fertilisation success was not affected by pH in P. corrugatus across a range of sperm concentrations. Fertilisation success in S. neumayeri declined significantly in pH 7.0 and 7.3 seawater, but only at a low sperm concentration. Seawater pH had no effect on the rate of egg cleavage in S. neumayeri, or the proportion of abnormal embryos 1-day post-fertilisation. P. corrugatus embryogenesis was also relatively robust to pH changes, with a significant effect detected only when the seawater pH was decreased to 7.0. While fertilisation and early cell division were relatively robust, later development through to the gastrula was sensitive to pH. In S. neumayeri, an effect of pH on development was evident by the gastrula stage, while there were significantly more abnormal P. corrugatus embryos in pH 7.0 up to the blastula stage, and in pH 7.0 and pH 7.3 at the coeloblastula stage. Our results are similar to the observations on other marine invertebrate species where fertilisation and early embryonic development are generally robust to lowered seawater pH, while the older coeloblastula and gastrula stages are more responsive. We also found no evidence to suggest that Antarctic species are more adversely affected by lower seawater pH compared with the findings for non-Antarctic counterparts. We conclude that in the two species we examined, near-future decreases in pH (decreases of ≈0.3–0.5 pH units) may not have a significant effect on fertilisation and early embryogenesis, while predicted longer term decreases (decreases of ≈0.7–0.77 pH units) could reduce fertilisation success in S. neumayeri if sperm concentrations are low and may increase abnormalities in P. corrugatus during later embryogenesis.  相似文献   

5.
Influences of temperature (0 and 20°C) and pH (3.0, 5.0, and 7.4) on the effect of zinc (Zn) and copper (Cu) on proteolytic activities of intestinal mucosa in planktivorous (blue bream, bleak), bentophagous (bream, roach) fishes and their potential preys (pond snail Limnaea stagnalis, planorbid Planorbarius purpura, dreissena Dreissena polymorpha, midge larvae Chironomus sp., water flea Daphnia longispina and total zooplankton) are revealed in this article. Cu decreases the caseinolytic and hemoglobinolytic activities in both fish and their preys more than Zn at temperature 20°C and pH 7.4. Low temperature intensifies the negative effect of the metals on the protease activity in fish (in the case of Zn 5–10 times, in the case of Cu 5–30 times). In fish prey species, the negative effect of the metals on the proteinase activity may be more significant. The influence of pH on Zn and Cu effects is less pronounced than that of low temperature. Maximum reduction of enzyme activities is observed for the combined action of low temperature and pH as well as of the studied metals.  相似文献   

6.
C. Dahm 《Marine Biology》1993,116(3):431-437
Growth and production of the shallow-water ophiuroids Ophiura albida and O. ophiura were investigated at two stations in the German Bight from 1988 to 1991. Growth rings visible on the vertebral ossicles of the ophiuroid arms were interpreted as annual age markers. A correction for overgrown first rings allows for more exact estimations of growth and age. In both species growth could be described by Von Bertalanffy growth functions with the asymptotic disc diameter D =10.1 mm, K=0.229 and t o=-0.192 in O. albida and D =27.7 mm, K=0.084 and t o=0.042 in O. ophiura. Somatic production was calculated from mass specific growth rates. Annual production:biomass (P:B) ratios were estimated at 0.32 for O. albida and 0.43 for O. ophiura.AWI Publication Number: 618  相似文献   

7.
Increased nutrient loading threatens many freshwater ecosystems. Elevated temperatures may increase the sensitivity to eutrophication in these ecosystems. Higher concentrations of possibly toxic reduced nitrogen (NH x ) in the water layer may be expected as production and anaerobic breakdown rates will increase. Apart from temperature, NH x and its effect on aquatic macrophytes will also depend on pH and light. We examined the interactive effects of NH x , temperature, pH and light on Elodea canadensis in a full factorial laboratory experiment. Results demonstrate that high NH x and high temperature together with low pH and low light causes the strongest toxic effects regarding relative growth rate and leaf tissue mortality. The adverse effects of high temperature and low light are most likely caused by increased metabolic activity and reduced photosynthesis, respectively. Severe toxicity at low pH compared to high pH can be ascribed to the ability of E. canadensis to induce a specialised bicarbonate-concentrating pathway at high pH, resulting in much higher carbon availability, needed for detoxification of NH x . We conclude that NH x toxicity will become more pronounced under higher temperatures, but that effects on aquatic macrophytes will strongly depend on pH of the water layer and specific metabolic adaptations of different species.  相似文献   

8.
S. Uthicke  N. Soars  S. Foo  M. Byrne 《Marine Biology》2013,160(8):1913-1926
Effects of acclimation to projected near-future ocean acidification (OA) conditions on physiology, reproduction and development were investigated in the tropical sea urchin Echinometra mathaei. Following 6 weeks in control or one of the three elevated pCO2 (pHNIST 7.5–8.1; pCO2 ~485–1,770 μatm) conditions, adult urchins exhibited a slight decline of growth in low pH treatments and moderately reduced respiration at intermediate levels. At 7 weeks, gametes from adults were used to produce larvae that were reared in their respective parental treatments. To assess whether larvae from acclimated parents are more resilient to elevated pCO2 than those not acclimated, larvae from control animals were also reared in the elevated pCO2 treatments. There was no difference in female ‘spawnability’ and oocyte size between treatments, but male spawning ability was reduced in increased pCO2 conditions. In elevated pCO2 treatments, the percentage of normal larvae and larval size decreased in the progeny of control- and elevated pCO2-acclimated parents, and arm asymmetry increased. Thus, acclimation of the parents did not make the progeny more resilient or sensitive to OA effects. Negative effects of increased pCO2 on reproduction and development may impact on recruitment and population maintenance of this species.  相似文献   

9.
There is evidence that ocean warming has effects on the ecology, including recruitment dynamics, of marine organisms. In association with rising mean spring temperatures in the Irish Sea, a time-series of juvenile scallop Pecten maximus density around the Isle of Man showed a significant increasing trend since 1991. Favorable conditions (warmer water and correspondingly greater food availability) during gonad development can increase scallop gamete production. We examined the possibility that ocean warming has directly increased recruitment of exploited P. maximus around the Isle of Man by enhancing gonad development. From 1991–2007, there was a significant positive correlation between scallop recruitment and mean spring (the main period of gonad development) temperature in the year of larval settlement. Detrended (i.e., accounting for a time effect) recruitment data showed a marginally non-significant correlation to temperature. Gonadal somatic index of adult scallops and temperature were positively correlated. These relationships support the hypothesis that greater gamete production associated with ocean warming may be primarily responsible for observed increases in recruitment success and CPUE in a commercially important shellfish stock.  相似文献   

10.
Ocean acidification is not happening in isolation but against a background of chronic low-level pollution for most coastal marine environments. The reproductive and larval stages of marine invertebrates can be highly sensitive to the impacts of both environmental pollutants and ocean acidification, but very little is currently known regarding the potential impacts of combined contaminant and high CO2 exposures on the health of marine organisms. Ocean acidification research to date has focused heavily on the responses of calcifying marine invertebrate larvae and algae, and as such the polychaetes as a group, despite their ecological importance, remain understudied. Here, we investigate the effects of elevated seawater CO2 (pH range 8.1–7.4, plus an extreme pH of 7.2 in the sperm motility experiments), in combination with the environmental pollutant copper (0.002 μM), on the early life history stages of the intertidal polychaete Pomatoceros lamarckii from two populations. P. lamarckii sperm appear to be robust to elevated seawater CO2. Whilst all three of the sperm motility end points measured showed a response to elevated CO2, these responses were small and not linear. The percentage of motile sperm and sperm curvilinear velocity were significantly reduced in the lower pH treatments of 7.4 and 7.2, whereas sperm straight-line velocity (VSL) was mostly unaffected except for an increased VSL at pH 8.0. Fertilisation success was investigated using two populations from the South West (UK), one from Torquay and one from Plymouth Sound. Fertilisation success was slightly but significantly reduced at the 7.6 and 7.4 pH treatments for both populations (a 9.0 % reduction in fertilisation success from pH 8.1 to 7.4 for Torquay), but with a greater effect observed in the population from Plymouth Sound (a 13.33 % reduction in fertilisation success). No additional impact of 0.002 μM copper exposure on fertilisation success was found. Larval survival was found to be much more sensitive to elevated CO2 than sperm function or fertilisation, and a significant interaction with copper exposure was observed. These results demonstrate the potential for polychaete larvae to be affected by predicted ocean acidification conditions and that chronic coastal pollutants, such as copper, have the potential to alter larval susceptibility to ocean acidification conditions.  相似文献   

11.
On the eastern shore of Nova Scotia late summer atmospheric systems cause upwelling of shelf water; the associated temperature variations of 10 °C with a 6 to 8 d period are comparable in magnitude to the seasonal variation. A laboratory study was undertaken to assess the effects of these temperature fluctuations on sea scallop (Placopecten magellanicus) growth and metabolism. In a factorial design, scallops were subjected to constant (10 °C) or a variable (6 to 15 °C) 8 d temperature cycle, and either a low (seston in filtered seawater) or high (seston supplemented with cultured phytoplankton) food diet. During the 48 d experiment scallop mortality was low and growth positive in all treatments. Shell and total tissue growth rate did not differ between temperature treatments, but growth in the high food treatments was 40 to 50% higher than in the low food treatments. However, soft tissue (excluding adductor) growth did show a temperature treatment effect; growth rates were significantly higher in the fluctuating temperature treatment, due in part to greater gonad development. Weight-standardized rates of scallop oxygen consumption (V sO2 , μmol O2 g−1 h−1) were 20 to 25% higher in high food than in low food treatments, consistent with the expected increase in respiration due to the higher growth rates. Scallop metabolism did not acclimate to the fluctuating temperature cycle; V sO2 and ammonium excretion (V sNH+ 4, μmol O2 g−1 h−1) remained dependent on ambient temperature throughout the experiment. V sNH+ 4 Q10 (2.77) was higher than V sO2 Q10 (2.01) which was reflected in a decrease in the O:N ratio at 15 °C, indicating a shift toward increased protein catabolism and a stressed state. At 10 °C, V sO2 and V sNH+ 4 in the variable temperature treatments were 15 to 18% lower than in the constant temperature treatments, a difference that was not detected in growth measurements. Results demonstrate that the metabolism of Placopecten magellanicus, unlike some bivalve species, is tightly coupled to fluctuations in ambient temperature. Although an absence of compensatory acclimation had a minimal effect on growth in this study, if high temperatures were combined with low food conditions a reduction in scallop production could result. Received: 23 June 1998 / Accepted: 8 February 1999  相似文献   

12.
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.  相似文献   

13.
Climate models predict that the average temperature in the North Sea could increase 3–5 °C and surface-waters pH could decrease 0.3–0.5 pH units by the end of this century. Consequently, we investigated the combined effect of decreased pH (control pH 8.1; decreased pH 7.6) and temperature (control 6.7 °C; elevated 9.5 °C) on the hatching timing and success, and the zoeal development, survival, feeding, respiration and growth (up to stage IV zoea) of the northern shrimp, Pandalus borealis. At elevated temperature, embryos hatched 3 days earlier, but experienced 2–4 % reduced survival. Larvae developed 9 days faster until stage IV zoea under elevated temperature and exhibited an increase in metabolic rates (ca 20 %) and an increase in feeding rates (ca 15–20 %). Decreased pH increased the development time, but only at the low temperature. We conclude that warming will likely exert a greater effect on shrimp larval development than ocean acidification manifesting itself as accelerated developmental rates with greater maintenance costs and decreased recruitment in terms of number and size.  相似文献   

14.
Increases in temperature can shorten planktonic larval durations, so that higher temperatures may reduce dispersal distances for many marine animals. To test this prediction, we first quantified how minimum time to settlement is shortened at higher temperatures for the ascidian Styela plicata. Second, using latitude as a correlate for ocean temperature and spatial genetic structure as a proxy for dispersal, we tested for a negative correlation between latitude and spatial genetic structure within populations, as measured by anonymous DNA markers. Spatial genetic structure was variable among latitudes, with significant structure at low and intermediate latitudes (high and medium temperatures) and there was no genetic structure within high-latitude (low temperature) populations. In addition, we found consistently high genetic diversity across all Australian populations, showing no evidence for recent local bottlenecks associated S. plicata’s history as an invasive species. There was, however, significant genetic differentiation between all populations indicating limited ongoing gene flow.  相似文献   

15.
Ocean acidification, as a result of increased atmospheric CO2, is predicted to lower the pH of seawater to between pH 7.6 and 7.8 over the next 100 years. The greatest changes are expected in polar waters. Our research aimed to examine how echinoid larvae are affected by lower pH, and if effects are more pronounced in polar species. We examined the effects of lowered pH on larvae from tropical (Tripneustes gratilla), temperate (Pseudechinus huttoni, Evechinus chloroticus), and a polar species (Sterechinus neumayeri) in a series of laboratory experiments. Larvae were reared in a range of lower pH seawater (pH 6.0, 6.5, 7.0, 7.5, 7.7, 7.8 and ambient), adjusted by bubbling CO2 gas. The effect of pH on somatic and skeletal growth, calcification index, development and survival were quantified, while SEM examination of the larval skeleton provided information on the effects of seawater pH on the fine-scale skeletal morphology. Lowering pH resulted in a decrease in survival in all species, but only below pH 7.0. The size of larvae were reduced at lowered pH, but the external morphology (shape) was unaffected. Calcification of the larval skeleton was significantly reduced (13.8–36.9% lower) under lowered pH, with the exception of the Antarctic species, which showed no significant difference. SEM examination revealed a degradation of the larval skeletons of Pseudechinus and Evechinus when grown in reduced pH. Sterechinus and Tripneustes showed no apparent difference in the skeletal fine structure under lowered pH. The study confirms the need to look beyond mortality as a single endpoint when considering the effects of ocean acidification that may occur through the 21st century, and instead, look for a suite of more subtle changes, which may indirectly affect the functioning of larval stages.  相似文献   

16.
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.  相似文献   

17.
This study tested the effects of acclimatization on the response of corals to elevated temperature, using juvenile massive Porites spp. and branching P. irregularis from Moorea (W149°50′, S17°30′). During April and May 2006, corals were acclimatized for 15 days to cool (25.7°C) or ambient (27.7°C) temperature, under shaded (352 μmol photons m−2 s−1) or ambient (554 μmol photons m−2 s−1) natural light, and then incubated for 7 days at ambient or high temperature (31.1°C), under ambient light (659 μmol photons m−2 s−1). The response to acclimatization was assessed as biomass, maximum dark-adapted quantum yield of PSII (F v/F m), and growth, and the effect of the subsequent treatment was assessed as F v/F m and growth. Relative to the controls (i.e., ambient temperature/ambient light), massive Porites spp. responded to acclimatization through increases in biomass under ambient temperature/shade, and low temperature/ambient light, whereas P. irregularis responded through reduced growth under ambient temperature/shade, and low temperature/ambient light. Acclimatization affected the response to thermal stress for massive Porites spp. (but not P. irregularis), with an interaction between the acclimatization and subsequent treatments for growth. This interaction resulted from a lessening of the negative effects of high temperature after acclimatizing to ambient temperature/shade, but an accentuation of the effect after acclimatizing to low temperature/shade. It is possible that changes in biomass for massive Porites spp. are important in modulating the response to high temperature, with the taxonomic variation in this effect potentially resulting from differences in morphology. These results demonstrate that corals can acclimatize during short exposures to downward excursions in temperature and light, which subsequently affects their response to thermal stress. Moreover, even con-generic taxa differ in this capacity, which could affect coral community structure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
We examined the response of the tropical sand dollar Arachnoides placenta to reduced seawater pH in experiments spanning ca. 50 % of the planktonic larval duration. A. placenta inhabits intertidal sandy beaches where we observed a minimum in situ pH range 0.06 pH units (pH 8.10–8.16). The responses of gametes and larvae to seawater pH were tested in vitro in ambient (pH 8.14, pCO2 = 525.7 μatm, total alkalinity = 2,651 μmol kg soln?1) and three reduced pH seawater treatments (7.8–7.0). Percentage fertilisation decreased significantly with decreasing pH across a range of sperm/egg ratios (4:1 up to 4,000:1). A. placenta reached the advanced pluteus stage in 4 days, and during this time, we saw no difference in survival rate of larvae between the ambient (67 %) and pH 7.79 (72 %) treatments. Four-day survival was, however, reduced to 44 and 11 % in the pH 7.65 and 7.12 treatments, respectively. Larval development and morphometrics varied among pH treatments. Embryos reared in pH 7.12 exhibited arrested development. Larvae reared at pH 7.65 showed delayed development and greater mortality compared with those reared at pH 7.79 and 8.14. When larval morphometrics are compared among larvae of the same size, differences in larval width and total arm length between pH treatments disappear. These results suggest that variation in larval size among the three highest pH treatments at a given time are likely the result of slower development and apparent shrinkage of surviving larvae and not direct changes in larval shape. There were no differences in the percentage inorganic content (a proxy for calcification) in larvae reared in either an ambient or a pH 7.7 treatment. The responses of fertilisation and development to decreased pH/increased pCO2 in A. placenta are within the range of those reported for other intertidal and subtidal echinoid species from colder latitudes.  相似文献   

19.
This study examined the effects of two selection treatments (elevated water temperature and air exposure) on the genetic and physiological characteristics of the juvenile marine mussel, Mytilus edulis (<10 mm). Genetic effects were measured on five allozymes and fitness assessed using physiological tests to estimate energy balance (scope for growth) as well as size, growth and survival. The in vitro treatments resulted in 48% mortality from an air exposure of 11 h at 27°C and 76% mortality from a 6-h exposure to 33°C water. Survivors (n = 1,152) of each treatment along with controls (n = 2,304) were measured and randomly placed in compartmentalized cages. Mussels were deployed to three bays in Prince Edward Island, Canada and monitored over a 10-month period. Initially, both of the treatments had an effect on mussel size and increased the heterozygosity of the surviving mussels. Physiological analyses after 3 months in the field showed that the two treated mussels showed lower metabolic rate that the control group. After 10 months in the field, the treated mussels were larger and had lower mortality than the untreated control mussels. Unexplained environmental interaction in each of the bays had an effect on allelic frequencies and heterozygosity. Overall, the results demonstrate that simple husbandry techniques can be used to increase the productivity of mussel seed and heterozygosity measures can be used to assess fitness. However, more field data is needed to determine the consistency of the increased productivity and if the increased productivity justifies the costs of a selective treatment. Furthermore, because the level of heterozygosity in juvenile mussel populations can vary considerably, both spatially and temporally, it may be effective as a warning of future natural mass mortality when overall heterozygosity levels are found to be low.  相似文献   

20.
Electron backscatter diffraction (EBSD) is a powerful microscopic technique to characterise the crystallography of biomineralisation. Here, we use high-resolution EBSD to characterise one of the least studied shells in the ocean, the female argonaut brood chamber, and to examine the changes in shell microstructure in response to incubation in decreased pH conditions. The thin (225 μm) shell of Argonauta nodosa is magnesium calcite with an average magnesium content of ca. 5.1 Wt % MgCO3. EBSD and scanning electron microscopy (SEM) revealed that calcification of the shell is bidirectional with formation of irregular crystalline grains. Following a 2 week incubation in a range of pH treatments (pH, 8.1–7.2), shell fragment weight decreased by dissolution in pH ≤ 7.8. EBSD and SEM revealed altered shell crystallography and microstructure at pH ≤ 7.4 due to preferential etching down crystallite grain boundaries and a change in crystalline orientation on both the inner and outer shell surfaces. Our study highlights the value of EBSD for the detailed examination of biogenic carbonates and its potential use in the field of ocean acidification research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号