首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, environmental decision analysis in subsurface contamination scenarios is performed using cost–benefit analysis. In this paper, we discuss some of the limitations associated with cost–benefit analysis, especially its definition of risk, its definition of cost of risk, and its poor ability to communicate risk-related information. This paper presents an integrated approach for management of contaminated ground water resources using health risk assessment and economic analysis through a multi-criteria decision analysis framework. The methodology introduces several important concepts and definitions in decision analysis related to subsurface contamination. These are the trade-off between population risk and individual risk, the trade-off between the residual risk and the cost of risk reduction, and cost-effectiveness as a justification for remediation. The proposed decision analysis framework integrates probabilistic health risk assessment into a comprehensive, yet simple, cost-based multi-criteria decision analysis framework. The methodology focuses on developing decision criteria that provide insight into the common questions of the decision-maker that involve a number of remedial alternatives. The paper then explores three potential approaches for alternative ranking, a structured explicit decision analysis, a heuristic approach of importance of the order of criteria, and a fuzzy logic approach based on fuzzy dominance and similarity analysis. Using formal alternative ranking procedures, the methodology seeks to present a structured decision analysis framework that can be applied consistently across many different and complex remediation settings. A simple numerical example is presented to demonstrate the proposed methodology. The results showed the importance of using an integrated approach for decision-making considering both costs and risks. Future work should focus on the application of the methodology to a variety of complex field conditions to better evaluate the proposed methodology.  相似文献   

2.
Outbreaks of microbiological waterborne disease have increased governmental concern regarding the importance of drinking water safety. Considering the multi-barrier approach to safe drinking water may improve management decisions to reduce contamination risks. However, the application of this approach must consider numerous and diverse kinds of information simultaneously. This makes it difficult for authorities to apply the approach to decision making. For this reason, multi-criteria decision analysis can be helpful in applying the multi-barrier approach to vulnerability assessment. The goal of this study is to propose an approach based on a multi-criteria analysis method in order to rank drinking water systems (DWUs) based on their vulnerability to microbiological contamination. This approach is illustrated with an application carried out on 28 DWUs supplied by groundwater in the Province of Québec, Canada. The multi-criteria analysis method chosen is measuring attractiveness by a categorical based evaluation technique methodology allowing the assessment of a microbiological vulnerability indicator (MVI) for each DWU. Results are presented on a scale ranking DWUs from less vulnerable to most vulnerable to contamination. MVI results are tested using a sensitivity analysis on barrier weights and they are also compared with historical data on contamination at the utilities. The investigation demonstrates that MVI provides a good representation of the vulnerability of DWUs to microbiological contamination.  相似文献   

3.
In this paper, a new methodology is developed for integrated allocation of water and waste-loads in river basins utilizing a fuzzy transformation method (FTM). The fuzzy transformation method is used to incorporate the existing uncertainties in model inputs. In the proposed methodology, the FTM, as a simulation model, is utilized in an optimization framework for constructing a fuzzy water and waste-loads allocation model. In addition, economic as well as environmental impacts of water allocation to different water users are considered. For equitable water and waste load allocation, all possible coalition of water users are considered and total benefit of each coalition, which is a fuzzy number, is reallocated to water users who are participating in the coalition. The fuzzy cost savings are reallocated using a fuzzy nucleolus cooperative game and the FTM. As a case study, the Dez River system in south-west of Iran is modeled and analyzed using the methodology developed here. The results show the effectiveness of the methodology in optimal water and waste-loads allocations under uncertainty.  相似文献   

4.
In this study, an inexact fuzzy-robust two-stage programming (IFRTSP) method is developed for tackling multiple forms of uncertainties that can be expressed as discrete intervals, probabilistic distributions and/or fuzzy membership functions. The model can reflect economic penalties of corrective measures against any infeasibilities arising due to a particular realization of system uncertainties. Moreover, the fuzzy decision space can be delimited into a more robust one with the uncertainties being specified through dimensional enlargement of the original fuzzy constraints. A management problem in terms of regional air pollution control has been studied to illustrate the applicability of the proposed approach. Results indicate that useful solutions for planning the air quality management practices have been generated. They can help decision makers identify desired pollution-abatement strategy with minimized system cost and maximized environmental efficiency.  相似文献   

5.
Changes in forest landscapes resulting from road construction have increased remarkably in the last few years. On the other hand, the sustainable management of forest resources can only be achieved through a well-organized road network. In order to minimize the environmental impacts of forest roads, forest road managers must design the road network efficiently and environmentally as well. Efficient planning methodologies can assist forest road managers in considering the technical, economic, and environmental factors that affect forest road planning. This paper describes a three-stage methodology using the Delphi method for selecting the important criteria, the Analytic Hierarchy Process for obtaining the relative importance of the criteria, and finally, a spatial multi-criteria evaluation in a geographic information system (GIS) environment for identifying the lowest-impact road network alternative. Results of the Delphi method revealed that ground slope, lithology, distance from stream network, distance from faults, landslide susceptibility, erosion susceptibility, geology, and soil texture are the most important criteria for forest road planning in the study area. The suitability map for road planning was then obtained by combining the fuzzy map layers of these criteria with respect to their weights. Nine road network alternatives were designed using PEGGER, an ArcView GIS extension, and finally, their values were extracted from the suitability map. Results showed that the methodology was useful for identifying road that met environmental and cost considerations. Based on this work, we suggest future work in forest road planning using multi-criteria evaluation and decision making be considered in other regions and that the road planning criteria identified in this study may be useful.  相似文献   

6.
Optimal redesign of groundwater quality monitoring networks: a case study   总被引:2,自引:0,他引:2  
Assessment and redesign of water quality monitoring networks is an important task in water quality management. This paper presents a new methodology for optimal redesign of groundwater quality monitoring networks. The measure of transinformation in discrete entropy theory and the transinformation–distance (T–D) curves are used to quantify the efficiency of sampling locations and sampling frequencies in a monitoring network. The existing uncertainties in the T–D curves are taken in to account using the fuzzy set theory. The C-means clustering method is also used to classify the study area to some homogenous zones. The fuzzy T–D curve of the zones is then used in a multi-objective hybrid genetic algorithm-based optimization model. The proposed methodology is utilized for optimal redesign of monitoring network of the Tehran aquifer in the Tehran metropolitan area, Iran.  相似文献   

7.
In this study, an interval-parameter fuzzy-stochastic two-stage programming (IFSTP) approach is developed for irrigation planning within an agriculture system under multiple uncertainties. A concept of the distribution with fuzzy-interval probability (DFIP) is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets, and probability distributions. IFSTP integrates the interval programming, two-stage stochastic programming, and fuzzy-stochastic programming within a general optimization framework. IFSTP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. IFSTP is applied to an irrigation planning in a water resources management system. Solutions from IFSTP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions are generated for objective function values and decision variables; thus, a number of decision alternatives can be generated under different levels of stream flows.  相似文献   

8.
This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.  相似文献   

9.
A superiority–inferiority-based inexact fuzzy stochastic programming (SI-IFSP) model was developed for planning municipal solid waste management systems under uncertainty. The SI-IFSP approach represents a new attempt to tackle multiple uncertainties in objective function coefficients which are beyond the capabilities of existing inexact programming methods. Through introducing the concept of fuzzy random boundary interval, SI-IFSP is capable of reflecting multiple uncertainties (i.e., interval values, fuzzy sets, probability distributions, and their combinations) in both the objective function and constraints, leading to enhanced system robustness. The developed SI-IFSP method was applied to a case study of long-term municipal solid waste management. Useful solutions were generated. A number of decision alternatives could be generated based on projected applicable conditions, reflecting the compromise between system optimality and reliability as well as the tradeoffs between economic and environmental objectives. Moreover, the consequences of system violations could be quantified through introducing a set of economic penalties, reflecting the relationships between system costs and constraint violation risks. The results suggest that the proposed SI-IFSP method can explicitly address complexities in municipal solid waste management systems and is applicable to practical waste management problems.  相似文献   

10.
An interval-parameter fuzzy-stochastic semi-infinite mixed-integer linear programming (IFSSIP) method is developed for waste management under uncertainties. The IFSSIP method integrates the fuzzy programming, chance-constrained programming, integer programming and interval semi-infinite programming within a general optimization framework. The model is applied to a waste management system with three disposal facilities, three municipalities, and three periods. Compared with the previous methods, IFSSIP have two major advantages. One is that it can help generate solutions for the stable ranges of the decision variables and objective function value under fuzzy satisfaction degree and different levels of probability of violating constraints, which are informative and flexible for solution users to interpret/justify. The other is that IFSSIP can not only handle uncertainties through constructing fuzzy and random parameter, but also reflect dynamic features of the system conditions through interval function of time over the planning horizon. By comparing IFSSIP with interval-parameter mixed-integer linear semi-infinite programming and parametric programming, the IFSSIP method is more reasonable than others.  相似文献   

11.
Road traffic noise is one of the most significant environmental impacts generated by transport systems. To this regard, the recent implementation of the European Environmental Noise Directive by Public Administrations of the European Union member countries has led to various noise action plans (NAPs) for reducing the noise exposure of EU inhabitants. Every country or administration is responsible for applying criteria based on their own experience or expert knowledge, but there is no regulated process for the prioritization of technical measures within these plans. This paper proposes a multi-criteria decision methodology for the selection of suitable alternatives against traffic noise in each of the road stretches included in the NAPs. The methodology first defines the main criteria and alternatives to be considered. Secondly, it determines the relative weights for the criteria and sub-criteria using the fuzzy extended analytical hierarchy process as applied to the results from an expert panel, thereby allowing expert knowledge to be captured in an automated way. A final step comprises the use of discrete multi-criteria analysis methods such as weighted sum, ELECTRE and TOPSIS, to rank the alternatives by suitability. To illustrate an application of the proposed methodology, this paper describes its implementation in a complex real case study: the selection of optimal technical solutions against traffic noise in the top priority road stretch included in the revision of the NAP of the regional road network in the province of Almeria (Spain).  相似文献   

12.
饮用水源水质安全预警监控体系构建框架研究   总被引:6,自引:3,他引:3  
根据安全预警体系的一般原理,从水质安全角度出发,基于基础信息层、预警分析层和决策应用层构建饮用水源水质安全预警监控体系框架;提出建立既考虑区位条件、社会经济、污染负荷、生态破坏力等驱动力、压力影响,又考虑了生态健康、服务功能、环境监管和环境风险等状态和响应的指标体系,为饮用水源水质安全预警监控研究提供一定思路。  相似文献   

13.
This article aims to support decision-making in sustainable development context, which must guarantee a long-term balance between environmental integrity, social equality and economic efficiency. It proposes a temporal outranking method, named MUPOM (MUlti-criteria multi-Period Outranking Method), which accommodates the requirements of sustainable development and demonstrates how the paradigm behind outranking methods can be of use in processing temporal impacts of decisions. The proposed method is structured in four phases: multi-criteria aggregation, temporal aggregation, exploitation and follow-up. MUPOM considers conflicting and incommensurable criteria, is based on pairwise comparison, is semi-compensatory, and makes use of thresholds. It provides valuable contributions for researchers and practitioners dealing with decision-making in SD context. The proposed method was applied on a case study to select the best compromise sustainable forest management option, while considering the environmental impacts, the economic benefits and decision-maker preferences. Results show the applicability of the method for real-world problems and its valuable outcomes.  相似文献   

14.
Development of fuzzy air quality index using soft computing approach   总被引:1,自引:0,他引:1  
Proper assessment of air quality status in an atmosphere based on limited observations is an essential task for meeting the goals of environmental management. A number of classification methods are available for estimating the changing status of air quality. However, a discrepancy frequently arises from the quality criteria of air employed and vagueness or fuzziness embedded in the decision making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies like air quality index when describing integrated air quality conditions with respect to various pollutants parameters and time of exposure. In recent years, the fuzzy logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental issues. In the present study, a methodology based on fuzzy inference systems (FIS) to assess air quality is proposed. This paper presents a comparative study to assess status of air quality using fuzzy logic technique and that of conventional technique. The findings clearly indicate that the FIS may successfully harmonize inherent discrepancies and interpret complex conditions.  相似文献   

15.
A novel approach to the problem of estimating climate impact on social systems is suggested. This approach is based on a risk concept, where the notion of critical events is introduced and the probability of such events is estimated. The estimation considers both the inherent stochasticity of climatic processes and the artificial stochasticity of climate predictions due to scientific uncertainties. The method is worked out in some detail for the regional problem of crop production and the risks associated with global climate change, and illustrated by a case study (Kursk region of the FSU). In order to get local climatic characteristics (weather), a so-called statistical weather generator is used. One interesting finding is that the 3% risk level remains constant up to 1.0–1.1°C rise of mean seasonal temperature, if the variance does not change. On the other hand, the risk grows rapidly with increasing variance (even if the mean temperature rises very slowly). The risk approach is able to separate two problems: (i) assessment of global change impact, and (ii) decision making. The main task for the scientific community is to provide the politicians with different options; the choice of admissible (from the social point of view) critical events and the corresponding risk levels is the business of decision makers.  相似文献   

16.
In environmental decisions, analysts commonly face substantial uncertainties around stakeholders’ values judgments. Multi-Attribute Value Theory (MAVT), a family of multi-criteria decision analysis techniques, is applied in participative settings to articulate stakeholders’ values in decision-making. In MAVT, value judgments represent the intensity of individuals’ preferences in a set of objectives, which are operationalized as scaling factors or weights. Different sets of weights may express variation in people’s preferences or value judgments. Unfortunately, there are still important methodological gaps regarding how to incorporate uncertainty and the substantial variation commonly encountered in stakeholders’ preferences. This article presents a model of uncertainty that encompasses the dispersion of value judgments in MAVT. To achieve this goal, we draw on info-gap theory, which provides a mathematically grounded method for exploring sensitivity to preference weights when there are relatively high levels of uncertainties. We experimentally tested the uncertainty model in an environmental decision problem. We found that MAVT can use info-gap analysis to deal with multiple value judgments, avoiding exclusive reliance on nominal expected values to inform decisions. We explored a mechanism to explicitly consider the trade-offs between the performance of alternatives and the level of uncertainty that in any specified context a decision maker is willing to accept. Findings emphasize the potential of MAVT to support environmental management decisions, particularly in situations where multiple stakeholders and their contested value judgments have to be considered simultaneously to explore uncertainties around value trade-offs.  相似文献   

17.
Regional policies to achieve water quality goals assign a unique pollution control technology to every pollution source in a watershed, thereby defining a watershed strategy. For watersheds with even a modest number of pollution sources and control alternatives, the decision problem has combinatorial complexity. The perception of complexity—manifested in innumerable feasible watershed strategies—commonly induces the use of simplifying decision heuristics and ad hoc decision rules that reduce decision complexity by limiting the choice set to a “manageable” number of alternatives. In problems with large complex choice sets, these decision heuristics simplify decision making by excluding the vast majority of feasible alternatives a priori. In contrast, watershed-scale optimization enables decision makers to consider all feasible alternatives implicitly, exploiting rather than restricting the complexity of the feasible choice set. This contrast is illustrated using mixed-integer linear programming to identify interstate watershed strategies that achieve Chesapeake Bay nutrient reduction goals for the Potomac River Basin. The use of optimization in collaborative decision making helped refine and capture decision makers’ underlying values and preferences in policy-relevant constraints reflecting equity and political feasibility. Optimization formulations incorporating these constraints identified more effective and desirable management alternatives that would not otherwise have been considered using familiar decision heuristics and traditional comparisons among a limited number of ad hoc scenarios. Incorporating optimization in collaborative decision making generated superior watershed strategies and eased the cognitive limitations on decision making by substituting the computational burden of solving mixed-integer linear programs for decision makers’ cognitive burden of enumerating alternatives and scenarios for environmental systems with combinatorial complexity.  相似文献   

18.
Today, competing land use is continuing to occur in many developed regions. In the Agricultural Development Zone of Western Sydney Region, which is characterised by complex landscape patterns, land use competition is widespread. From a land use planning perspective, identification of suitable locations for a given type of land use is necessary for decision makers to formulate land use alternatives in different locations, based on existing land potential and constraints. For such a region, use of a simple method that implements a categorical system and considers only inherent land characteristics in the analysis is often inadequate to arrive at an optimal spatial decision. The primary aim of this paper is to develop spatial modelling procedures for agricultural land suitability analysis using compromise programming (CoPr) and fuzzy set approach within a geographical information systems (GIS) environment. Five main sets of spatial data for use as decision criteria were developed by using fuzzy set methodology: a land suitability index (LSI) for maximising the land productivity objective; an erosion tolerance index (ETI) for minimising the erosion risk objective; a runoff curve number (CN) for maximising the water discharge regulation objective; an accessibility (RP) measure for maximising the land accessibility objective; and the proximity to water body (WP) for minimising the water pollution objective. An L p -metric was used in the analysis utilising different strategies with representative indices ranging from a situation where full tradeoff among criteria occurs to a noncompensatory condition. Different weighting combinations were also applied, and decision analysis was carried out by using values ranging from 0 to 1.0, where 1.0 is considered as an ideal point. The CoPr model demonstrated in this paper yielded a promising result, as several different techniques of sensitivity analysis show reasonably good results. Likewise, an overlay of that result with the present land use/land cover indicates a good corresponding spatial matching between existing land use (orchard and cultivated land), and the cells (land parcels) classified as the best in CoPr. The results are amenable to various map display techniques, either using continuous values or by defining different cut off points in the data space within a raster GIS environment.  相似文献   

19.
The consideration and disclosure of uncertainties is fundamental to a credible EA process, but little is known about the nature and type of requirements and guidance available to proponents, practitioners and decision makers about how to deal with uncertainties. This paper examines the provisions for considering and disclosing uncertainties in EA. Methods are based on a comparative review of uncertainty provisions in EA legislation, regulations and guidance documents under Canadian federal, provincial and territorial jurisdictions. Results show 10 types of provisions applied at different stages of the EA process with considerable jurisdictional variability and incoherence. The most common provision was that decision makers can request that project proponents provide more information, followed by the preparation of contingency plans, and that practitioners document their assumptions about data reliability. Most of these provisions were found in guidelines, versus legislation or regulations; and most addressed impact management, with very few provisions for addressing uncertainty during EA review and decision making. Current practices of uncertainty (non)disclosure and (non)consideration in EA can be explained, in part, by the superficial nature and limited extent of the requirements and guidance made available to EA practitioners, proponents, and decision makers. The existing requirements placed on proponents and practitioners to disclose and consider uncertainties are necessary, but insufficient. Stronger, more coherent and transparent requirements for those tasked with EA review and decision making to consider uncertainty information when disclosed, and the development of practical guidance on how to do so, are needed.  相似文献   

20.
One of the important issues in river quality management is to provide pollution control strategies which are acceptable for all stakeholders. When there is only one water quality checkpoint in a reach of a river which receives pollution loads of several dischargers and dischargers are penalized for any water quality violation, the game theory can be used for modeling the natural process of bargaining among load dischargers considering the assimilative capacity of a river. There are also some types of uncertainties in river water quality management which should be incorporated throughout the bargaining process. Signaling games can be utilized for modeling the bargaining among dischargers and developing perfect Bayesian equilibrium (PBE) strategies for pollution control. In this paper, a new methodology called N-person iterated signaling game is developed for river quality management considering the existing uncertainties in pollution loads of dischargers. The methodology can provide the stable PBE waste load allocation strategies. The practical utility of the proposed methodology is illustrated by applying it to a reach of the Zarjub River in Iran. This reach includes seven pollution load dischargers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号