首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aqueous 7-d germination and growth experiments were performed to compare responses of T. latifolia to exposures of atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-atrazine) and paraquat dichloride (1,1′-dimethyl-4,4′-bipyridinium dichloride). T. latifolia seed germination was < 50 % in concentrations ≥ 1.0 mg/L of paraquat dichloride. No observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) for paraquat and root growth were 0.001 and 0.01 mg/L, respectively, while NOEC and LOEC for paraquat and shoot growth were 0.01 and 0.1 mg/L, respectively following 7-d exposures. Greater than 72 % of seeds germinated in each concentration up to 30 mg/L atrazine. After 7-d exposure, NOEC and LOEC for atrazine and root growth were 0.1 and 1.0 mg/L, while atrazine and shoot growth NOEC and LOEC values were 15 and 30 mg/L, respectively. This research provides data concerning relative sensitivity of T. latifolia seedlings to the herbicides atrazine and paraquat, as well as the potential use of T. latifolia as a representative plant test species.  相似文献   

2.
Tran AT  Hyne RV  Doble P 《Chemosphere》2007,67(5):944-953
The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.  相似文献   

3.
The dechlorination of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) via reaction with metallic iron under low-oxygen conditions was studied using reaction mixture pH values of 2.0, 3.0, and 3.8. The pH control was achieved through addition of sulfuric acid throughout the duration of the reaction. The lower the pH of the reaction mixture, the faster the degradation of atrazine. The surface area of the sulfuric acid-treated iron particles was 0.31 (+/- 0.01) m2 g-1 and the surface area normalized initial pseudo-first order rate constants (kSA, where rate = kSA x (surface area/l) x [Atrazine]) at pH values of 2.0, 3.0, and 3.8 were equal to, respectively, 3.0 (+/- 0.4) x 10(-3) min-1 m-2 l, 5 (+/- 3) x 10(-4) min-1 m-2 l, and 1 (+/- 1) x 10(-4) min-1 m-2 l. The observed products of the degradation reaction were dechlorinated atrazine (2-ethylamino-4-isopropylamino-1,3,5-triazine) and possibly hydroxyatrazine (2-ethylamino-4-isopropylamino-6-hydroxy-s-triazine). Triazine ring protonation may account, at least in part, for the observed effect of pH on atrazine dechlorination via metallic iron.  相似文献   

4.
Ma WT  Fu KK  Cai Z  Jiang GB 《Chemosphere》2003,52(9):1627-1632
The excess use of triazine herbicides in agriculture causes severe contamination to the environment especially for ground water. Gas chromatography coupled with mass spectrometry (GC/MS) was used to analyze simazine, atrazine (ATR), cyanazine, as well as the degradation products of ATR such as deethylatrazine and deisopropylatrazine in environmental water samples. These compounds were baseline separated by the established GC method. The water samples were pre-concentrated by solid-phase-extraction (SPE) and analyzed by ion trap MS at sub- to low-ppt levels. Recovery of ATR by the SPE pre-concentration using a C18 cartridge was determined as 90.5 +/- 3.5%. Detection limit of the method using selected ion monitoring technique for ATR was 1.7 ppt when one liter water was analyzed. The relative analytical error for ATR fortified water samples at 200 ppt was -12.5% (n=12) with triple analysis and the relative standard deviation was 3.2%. Trace levels of ATR at 3.9 and 9.7 ppt were determined in water samples collected from a reservoir and a river in Hong Kong.  相似文献   

5.
Atrazine is one of the most frequently used herbicides. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes it a frequently encountered groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil; after which, we inoculated the barriers with a consortium of atrazine-degrading microorganisms and evaluated the ability of the barriers to remove atrazine from a simulated groundwater containing 1 mg L(-1) atrazine. The soybean oil provided a carbon rich and nitrogen poor substrate to the microbial consortium. Under these nitrogen-limiting conditions it was hypothesized that bacteria capable of using atrazine as a source of nitrogen would remove atrazine from the flowing water. Our hypothesis proved correct and the biobarriers were effective at removing atrazine when the nitrogen content of the influent water was low. Levels of atrazine in the biobarrier effluents declined with time and by the 24th week of the study no detectable atrazine was present (limit of detection<0.005 mg L(-1)). Larger amounts of atrazine were also removed by the biobarriers; when biobarriers were fed 16.3 mg L(-1) atrazine 97% was degraded. When nitrate (5 mg L(-1) N), an alternate source of nitrogen, was added to the influent water the atrazine removal efficiency of the barriers was reduced by almost 60%. This result supports the hypothesis that atrazine was degraded as a source of nitrogen. Poisoning of the biobarriers with mercury chloride resulted in an immediate and large increase in the amount of atrazine in the barrier effluents confirming that biological activity and not abiotic factors were responsible for most of the atrazine degradation. The presence of hydroxyatrazine in the barrier effluents indicated that dehalogenation was one of the pathways of atrazine degradation. Permeable barriers might be formed in-situ by the injection of innocuous vegetable oil emulsions into an aquifer or sandy soil and used to remove atrazine from a contaminated groundwater or to protect groundwater from an atrazine spill.  相似文献   

6.
The triazine herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-trazine) was selected as a chemical stressor in an investigation of how toxicological responses of individually grown macrophytes reflect those of plants grown in more natural model populations and two-species communities. Phytotoxicity of the compound to Myriophyllumspicatum L. and Elodeacanadensis Michx. was assessed under semi-natural field conditions using 12000l outdoor microcosms. Exposure concentrations of 25, 50, 100, 250mugl(-1) plus controls (n=3) were evaluated, selected to fall within a range of concentrations known to produce a toxic response in the tested macrophytes, and effective concentrations required to cause a decrease in biomass endpoints by 10%, 25%, and 50% were estimated. The sensitivities of aquatic plants to atrazine did not differ substantially between planting systems, and few interactions between the effects of the planting method and atrazine effects on macrophyte biomass were detected using a two-way ANOVA. A lack of significant differences in biomass and relative growth rate measures between plants grown under the various test systems also indicated that interactions between and among species did not influence growth of plants in the model population and communities. Under these test conditions, the use of the "cone-tainer" method provided estimates of toxicity consistent with those from plants grown in assemblages, and potential interactions between plants were not found to modify the response of macrophytes to atrazine.  相似文献   

7.
We investigated contamination by endocrine-disrupting chemicals in drinking water from 35 major Italian cities and five popular Italian brands of bottled mineral water. The quality of Italian drinking water was assessed by combing chemical analysis with bioassay to quantify specific estrogenic contaminants and to characterize the actual biological effect of the mixture of chemicals present in drinking water including the contribution of not targeted compounds. The selected contaminants were natural and synthetic steroid estrogens, alkylphenols and bisphenol A, linuron, triazine herbicides, and their metabolites. A specific analytical method was developed based on solid phase extraction of 1 L of water and concentration to 100 μL for quantification by electrospray ionization liquid chromatography tandem mass spectrometry, achieving quantification limits of 0.05–0.36 ng/L for herbicides and 0.64–7.70 ng/L for steroids and phenols. No steroid estrogens were detected in any of the samples, while bisphenol A and nonylphenols were detected in the ranges of 0.82–102.00 and 10.30–84.00 ng/L respectively. Herbicides and their degradation products, when present, were found from slightly above the quantification limits up to 49.91 ng/L, mainly from cities in northern Italy. Chemical analyses were complemented by the performance of a bioassay for the determination of the estrogenic activity in the extracts based on the transactivation of estrogen receptor α-transfected reporter HeLa-ERE-Luciferase-Neomycin cell line. Activity was generally low with maximum estrogenicity of 13.6 pg/L estradiol equivalents.  相似文献   

8.
A solid-phase microextraction (SPME) procedure has been developed to extract eight organophosphorus pesticides (OPs) in water and the method was compared with a conventional solid phase extraction (SPE) technique. The extracted OPs were analyzed by gas chromatography using thermionic specific detection. Both extraction methods presented linear calibration at least over the concentration range investigated (100 to 1000 ng x mL(-1) for SPE and 1 to 100 ng x mL(-1) for SPME). SPME method presented higher sensitivity than SPE. The quantitation limits were between 0.1 to 1.0 ng x mL(-1) for SPME depending upon the analyte, and 100 ng x mL(-1) for SPE. The precision, as measured by the standard deviations (RSD), were in the range 3.6% to 5.8% for SPME and 2.4% to 9.2% for SPE. Along with the feature of being a solvent - free sampling technique, SPME offers additional benefits due to its high sensitivity, simplicity, and small size sample required (typically: SPE - 500 mL, SPME - 5 mL).  相似文献   

9.
The objective of this study was to investigate the behavior of sorption and desorption of the herbicides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethyleurea] in soil samples from a typical lithosequence located in the municipality of Mamborê (PR), southern Brazil. Five concentrations of 14C-atrazine and 14C-diuron were used for both herbicides (0.48, 0.96, 1.92, 3.84, and 7.69 mg L(-1)). Sorption of both herbicides correlated positively with the organic carbon and clay content of the soil samples. Sorption isotherms were well described by the Freundlich model. The slope values of the isotherm (N) ranged from 0.84 to 0.90 (atrazine) and from 0.75 to 0.79 (diuron) for the lithosequence samples. Sorption of diuron was high regardless of the soil texture or the concentration added. The desorption isotherms for atrazine and diuron showed good fit to the Freundlich equation (R2 >or= 0,87). Atrazine slope values for the desorption isotherms were similar for the different concentrations and were much lower than those observed for the sorption isotherms. Significant hysteresis was observed in the herbicide desorption. When the two herbicides were compared, it was found that diuron (N = 0.06-0.22) presented more pronounced hysteresis than atrazine. The results showed that, quantitatively, a greater atrazine fraction applied to these soils remains available to be leached in the soil profile, as compared to diuron.  相似文献   

10.
Mineralization of aged atrazine and mecoprop in soil and aquifer chalk.   总被引:1,自引:0,他引:1  
The effect of ageing on the bioavailability and sorption of the herbicides atrazine and mecoprop was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. The herbicides were incubated in sterile soil or chalk up to 3 months prior to inoculation with 5 x 10(7) cells g(-1) (dry weight) of a mecoprop degrading highly enriched culture (PM) or 1 x 10(9) cells g(-1) (dry weight) of the atrazine degrading Pseudomonas sp. strain ADP. As a measure of the bioavailable residues accumulated 14CO2 was measured for 2 months. In both soil and chalk ageing limited the rate of atrazine mineralization, and in chalk the extent of mineralization was reduced as well. The fraction of sorbed atrazine in the soil ranged between 50% and 62%, whereas a maximum of 12% was sorbed in chalk. No impact on the mineralization of aged mecoprop was seen as no sorption of this herbicide on either soil or chalk was measured.  相似文献   

11.
Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler-irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47-mm rain falling in a 2-hour event 24 hours after application of alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide) and atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2, 4-diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its' solubility were observed. When the herbicides were applied in 64,000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally-treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

12.
J. P. Sherry  A. Borgmann 《Chemosphere》1993,26(12):2173-2184
Environmental immunoassays can help lower the operating costs and improve the effectiveness of residue laboratories. The present study assesses the ability of a commercially available enzyme immunoassay (EIA) to detect triazine herbicides in water. The tube based EIA could detect atrazine in lake and river water with detection limits of 62 pg/mL and 180 pg/mL respectively. The assay's ability to quantify atrazine in a set of 124 water samples taken from many parts of Canada was compared with a reference method that used gas chromatographic separation combined with a nitrogen phosphorous detector (GC-NPD) (R=0.919). A 71 % reduction in analytical load was achieved at a threshold concentration of 1 ng/mL. There were 2.4 % false negative and 0.8 % false positive results associated with that load reduction. The variability of the assay control parameters was generally within two standard deviations of the mean response for 65 assays. The EIA for atrazine is recommended for use as a screening technique and as an inexpensive way to monitor triazine levels in waters that are known to be contaminated with those herbicides.  相似文献   

13.
In this study, the occurrence of trace amounts of natural and synthetic steroid estrogens in the aquatic environment was studied using liquid chromatography coupled with electrospray mass spectrometry, following solid-phase extraction (SPE). The SPE was performed with C18 and NH2 cartridges. The first objective was to develop a reliable method for analyzing steroid estrogens (resulting from human and animal excretions) in different matrices. The method developed was then applied to quantify the occurrence of natural and synthetic hormones (estrone [E1], 17beta-estradiol [betaE2], 17alpha-estradiol [alphaE2], estriol [E3], and 17alpha-ethinylestradiol [EE2]) in environmental samples in surface water and wastewater treatment plant (WWTP) influent and effluent. In the WWTP influents, betaE2, alphaE2, and E3 were identified as ranging up to 72.6 ng/L in WWTP influent and to 16 ng/L in WWTP effluent. Analysis o f surface wa ter sampled upstream from the WWTP revealed the presence of all five estrogens, at levels up to 19.8 ng/L. These concentrations of estrogens pose an issue for large and small communities, because they are higher than the recommended guidelines for estrogen-active compounds and because a lot of communities use surface water as drinking-water sources.  相似文献   

14.
This study was conducted to evaluate atrazine (2-chloro-4-ethylamino-6-isopropyl-1,3,5-triazine) and alachlor (2-chloro-N-(methoxymethyl)acetamide) dissipation and movement to shallow aquifers across the Northern Sand Plains region of the United States. Sites were located at Minnesota on a Zimmerman fine sand, North Dakota on Hecla sandy loam, South Dakota on a Brandt silty clay loam, and Wisconsin on a Sparta sand. Herbicide concentrations were determined in soil samples taken to 90 cm four times during the growing season and water samples taken from the top one m of aquifer at least once every three months. Herbicides were detected to a depth of 30 cm in Sparta sand and 90 cm in all other soils. Some aquifer samples from each site contained atrazine with the highest concentration in the aquifer beneath the Sparta sand (1.28 microg L(-1)). Alachlor was detected only once in the aquifer at the SD site. The time to 50% atrazine dissipation (DT50) in the top 15 cm of soil averaged about 21 d in Sparta and Zimmerman sands and more than 45 d for Brandt and Hecla soils. Atrazine DT50 was correlated positively with % clay and organic carbon (OC), and negatively with % fine sand. Alachlor DT50 ranged from 12 to 32 d for Zimmerman and Brandt soils, respectively, and was correlated negatively with % clay and OC and positively with % sand.  相似文献   

15.
The influence of temperature on the disappearance of four s-triazine herbicides, terbuthylazine, simazine, atrazine and prometryn was studied in sea, river and groundwaters spiked with approx. 5 mg l(-1) of each during long-term laboratory incubation. Residues were analyzed by GC-NPD and confirmed by GC-MSD. No clean-up was necessary and a micro on-line method for the determination of herbicide residues was used. The results showed that temperature had little effect on the behaviour of the four herbicides in river and seawaters but strongly affected their behaviour in groundwater. Simazine was the most readily affected compound in sea, river and groundwaters, while terbuthylazine and atrazine were the most persistent in all cases, especially in riverwater. Half-lives ranged from 41 days (constant rate = 0.017 days(-1)) to 196 days (constant rate = 0.003 days(-1)) for simazine (40 degrees C) and terbuthylazine (20 degrees C), respectively, in riverwater. Only for terbuthylazine in riverwater was the remaining percentage at the end of the experiment higher than 50% (58%, 3.21 mg l(-1)). In the other cases, the remaining percentage varied from 4% (0.20 mg l(-1), 40 degrees C) to 43% (2.25 mg l(-1), 20 degrees C) for simazine and terbuthylazine, respectively, in groundwater.  相似文献   

16.
Chlorophyll a, freshweight biomass, ash-free dry weight, cell numbers, species richness, community carbon uptake and species-specific carbon uptake were used to monitor the impact of atrazine (2 chloro-4-ethylamino-6-isopropylamino-s-triazine) on an in situ, enclosed periphyton community. Atrazine concentrations ranging from 0.08 to 1.56 mg litre(-1) were used during the 2 years of study. In both 1982 and 1983, there was a shift from a chlorophyte- to a diatom-dominated community. In 1982 the cyanobacterium Cylindrospermum stagnale and the chlorophyte Tetraspora cylindrica developed isolated colonies in the 1.56 mg litre(-1) treatment, indicating resistance to atrazine at this concentration. After atrazine exposure, community productivity was reduced by 21% to 82% in the low to high exposures, respectively. After day 21 productivity returned to control levels. It was shown, using track autoradiography, that the productivities of the larger algae Mougeotia sp., Oedogonium sp., Tolypothrix limbata and Epithemia turgida were the most affected, with reductions of 74.3% to 93.1% that of the controls. All the biotic measures indicated reduced growth after herbicide exposure.  相似文献   

17.
The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1ng L(-1) and MeHg was less than 0.2ng L(-1). THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56)ng L(-1) at Sleepers River, Vermont; 112 (0.75)ng L(-1) at Rio Icacos, Puerto Rico; and 55 (0.80)ng L(-1) at Panola Mt., Georgia. Filtered (<0.7microm) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5ng L(-1) at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling.  相似文献   

18.
To help elucidate the mechanism of dechlorination of chlorinated triazines via metallic iron, terbutylazine (TBA: 2-chloro-4-ethylamino-6-terbutylamino-1,3,5-triazine), deisopropyl atrazine (DIA: 2-amino-4-chloro-6-ethylamino-1,3,5-triazine), and chlorinated dimethoxy triazine (CDMT: 2-chloro-4,6-dimethoxy-1,3,5-triazine) were degraded via zero valent iron under controlled pH conditions. The lower the solution pH the faster the degradation, with surface area normalized pseudo first order rate constants ranging from 2 (+/- 1)x10(-3) min(-1) m(-2) l for TBA at pH 2.0 to 4 (+/- 2)x10(-5) min(-1) m(-2) l for CDMT at pH 4.0. Hydrogenolysis (dechlorinated) products were observed for TBA and CDMT. Electrochemical reduction on mercury showed similar behavior for all of the triazines studied; the initial product of CDMT bulk electrolysis was the dechlorinated compound. The iron results are consistent with a mechanism involving the addition of surface hydrogen to the surface associated triazine.  相似文献   

19.
The region of Ribeir?o Preto City, located in Southeast of Brazil, S?o Paulo State, is an important sugarcane, soybean, and corn producing area with a high level of pesticides utilization. This region is also an important recharge area for groundwater supply of the Guarany aquifer. Since the past ten years atrazine, simazine, ametryn, tebuthiuron, diuron, 2,4-D, picloram, and hexazinone are the main herbicides used in this area. In order to study a possible leaching of some of these herbicides into the aquifer, surface, and groundwater samples were collected in a watershed during the years of 1996 to 2003, from different locations. To detect and quantify the herbicides a GC-MS (gas chromatograph/mass spectrometry) method was used. The response of the herbicides analyzed was linear over the concentration range of 0.02 to 2.0 microg/L. Analysis of groundwater revealed that the herbicides tebuthiuron, diuron, atrazine, simazine, and ametryn were not present in the samples. In the surface water collected in 1997, ametryn was present in two out of nine locations with concentrations ranging from 0.17 and 0.23 microg/L, which is above the allowable 0.1 microg/L according to the European safety level. The leaching potential of tebuthiuron, diuron, atrazine, simazine, 2,4-D, picloram, and hexazinone has been evaluated using CMLS-94, "Chemical Movement in Layered Soil," as simulation model. No leaching into the depth of the water table at 40 m was found.  相似文献   

20.
During 1993, estuarine surface water samples were collected from the mid-Texas coast (Corpus Christi to Port Lavaca, TX). Agricultural watershed areas as well as tidal creeks immediately downstream were chosen as sampling sites along with adjoining bay sampling stations. Collections were made throughout the growing season (February to October 1993) before and after periods of significant (> 1.25 cm) rainfall. All samples were initially screened for the presence of pesticides using enzyme-linked immunosorbent assay (ELISA) test kits (EnviroGard) for triazine herbicides and carbamate insecticides. All samples were extracted and then analyzed using gas chromatography (GC) for quantification of atrazine. Only samples testing positive for carbamate insecticides via ELISA were further extracted for GC analysis to quantify aldicarb and carbofuran. Additionally, laboratory toxicity tests using phytoplankton were examined from published, peer-reviewed literature and compared with the atrazine field levels found in Texas. Results of ELISA screening indicated the presence of triazine herbicides in nearly all samples (>93%). GC analysis further confirmed the presence of atrazine concentrations ranging from <0.01-62.5 microg/L. Screening tests also found detectable levels of carbamate insecticides (aldicarb and carbofuran) that were also confirmed and quantified by GC. Comparison of measured concentrations of atrazine compared with published toxicity tests results indicated that there was a potential environmental risk for marine/estuarine phytoplankton in surface waters of Texas estuaries, particularly when the chronic nature of atrazine exposure is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号