首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The paper describes the results of a laboratory study on the effects of macropore tortuosity on breakthrough curves BTCs and solute distribution in a Forman loam (fine loamy-mixed Udic Haploborolls) soil. BTC were obtained using 2-D columns (slab) containing artificial macropores of five different tortuosity levels. The BTCs were run under a constant hydraulic head of 0.08 m over an initially air dry soil. The input solutions contained 1190 mg l−1 of potassium bromide, 10 mg l−1 of Rhodamine WT, and 100 mg l−1 of FD&C Blue #1. A soil column without macropores served as a control. The displacement of a non-adsorbed tracer was not affected by the tortuosity level. An increase in macropore tortuosity progressively increased the breakthrough time, increased the apparent retardation coefficient (R′), decreased the depth to the center of mass of a given adsorbed tracer, and increased the anisotropy in tracer distribution profile. The relative importance of macropore tortuosity increased with an increase in the adsorption coefficient of the tracer. Compared to macropore continuity, the macropore tortuosity had greater impact on solute distribution profile than in its leaching.  相似文献   

3.
Soil macropore networks establish a dual-domain transport scenario in which water and solutes are preferentially channeled through soil macropores while slowly diffusing into and out of the bulk soil matrix. The influence of macropore networks on intra-ped solute diffusion and preferential transport in a soil typical of subsurface-drained croplands in the Midwestern United States was studied in batch- and column-scale experiments. In the batch diffusion studies with soil aggregates, the estimated diffusion radius (length) of the soil aggregates corresponded to the half-spacing of the aggregate fissures, suggesting that the intra-ped fissures reduced the diffusion impedance and preferentially allowed solutes to diffuse into the soil matrix. In the column-scale solute transport experiments, the average diffusion radius (estimated from HYDRUS-2D simulations and a first-order diffusive transfer term) was nearly double that of the batch-scale study. This increase may be attributed to a loss of pore continuity and a compounding of the small diffusion impedance through macropores at the larger scale. The column-scale solute transport experiments also suggest that two preferential networks exist in the soil. At and near soil saturation, a primary network of large macropores (possibly root channels and earthworm burrows) dominate advective transport, causing a high degree of physical and sorption nonequilibrium and simultaneous breakthrough of a nonreactive (bromide) and a reactive (alachlor) solute. As the saturation level decreases, the primary network drains, while transport through smaller macropores (possibly intra-ped features) continues, resulting in a reduced degree of nonequilibrium and separation in the breakthrough curves of bromide and alachlor.  相似文献   

4.
5.
Fractures and biopores can act as preferential flow paths in clay aquitards and may rapidly transmit contaminants into underlying aquifers. Reliable numerical models for assessment of groundwater contamination from such aquitards are needed for planning, regulatory and remediation purposes. In this investigation, high resolution preferential water-saturated flow and bromide transport data were used to evaluate the suitability of equivalent porous medium (EPM), dual porosity (DP) and discrete fracture/matrix diffusion (DFMD) numerical modeling approaches for assessment of flow and non-reactive solute transport in clayey till. The experimental data were obtained from four large undisturbed soil columns (taken from 1.5 to 3.5 m depth) in which biopores and channels along fractures controlled 96-99% of water-saturated flow. Simulating the transport data with the EPM effective porosity model (FRACTRAN in EPM mode) was not successful because calibrated effective porosity for the same column had to be varied up to 1 order of magnitude in order to simulate solute breakthrough for the applied flow rates between 11 and 49 mm/day. Attempts to simulate the same data with the DP models CXTFIT and MODFLOW/MT3D were also unsuccessful because fitted values for dispersion, mobile zone porosity, and mass transfer coefficient between mobile and immobile zones varied several orders of magnitude for the different flow rates, and because dispersion values were furthermore not physically realistic. Only the DFMD modeling approach (FRACTRAN in DFMD mode) was capable to simulate the observed changes in solute transport behavior during alternating flow rate without changing values of calibrated fracture spacing and fracture aperture to represent the macropores.  相似文献   

6.
We analyzed the long-term behavior of breakthrough curves (BTCs) and temporal moments of a solute subjected to Freundlich equilibrium sorption (s = kc(n)). For one-dimensional transport in a homogeneous porous medium, we derived a power-law relation between travel time, tau, and solute displacement, chi, with the exponent being equal to the Freundlich n exponent. The mean solute velocity, derived from the first time moment, was found to change as tau(n-1). For n values larger than 0.66, the second time moment could be related to c chi(2/n), where c is a constant. An approach based on the use of a critical concentration was developed to estimate the presence of the asymptotic regime in the tail of the BTC. This approach was tested successfully using numerical case studies. One-dimensional numerical simulations with varying values of k, n and initial mass were run to verify the closed form analytical expressions for the large time behavior of temporal moments and the tailing part of breakthrough curves. Good agreement between the slope of the tailing part of log-log transformed BTCs and the predicted slope using asymptotic theory was found. Asymptotic theory in general underestimated the magnitude of the concentration in the tail. The quality of the estimated concentrations in the tail improved for small values of the dispersivity. Experimental BTCs of uranin and benazolin were analyzed in combination with sorption/desorption batch experiments using asymptotic theory. A good agreement between the value of n parameter derived from desorption experiment with benazolin and the value of the n parameter derived from the tail of the BTC was found.  相似文献   

7.
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.  相似文献   

8.
9.
Breakthrough adsorption study of migratory nickel in fine-grained soil.   总被引:1,自引:0,他引:1  
The present study was conducted to evaluate the breakthrough curve for nickel adsorption in fine-grained soil from a nearby ash pond site of a thermal power plant. Nickel was found to be the major polluting solute in the ash sluicing wastewater. The adsorption of nickel by vertical soil column batch test and horizontal migration test was carried out in the laboratory. Field investigation was conducted also, by installing test wells around the ash pond site. Experimental results showed a good adsorptive capacity of soil for nickel ions. The breakthrough curves showed a reasonable fitting with a one-dimensional mathematical model. The breakthrough curves yielded from field test results showed good agreement with a two-dimensional mathematical model.  相似文献   

10.
Subsurface solute transport through structured soil is studied by model interpretation of experimental breakthrough curves from tritium and phosphorus tracer tests in three intact soil monoliths. Similar geochemical conditions, with nearly neutral pH, were maintained in all the experiments. Observed transport differences for the same tracer are thus mainly due to differences in the physical transport process between the different monoliths. The modelling is based on a probabilistic Lagrangian approach that decouples physical and chemical mass transfer and transformation processes from pure and stochastic advection. Thereby, it enables explicit quantification of the physical transport process through preferential flow paths, honouring all independently available experimental information. Modelling of the tritium breakthrough curves yields a probability density function of non-reactive solute travel time that is coupled with a reaction model for linear, non-equilibrium sorption–desorption to describe the phosphorus transport. The tritium model results indicate that significant preferential flow occurs in all the experimental soil monoliths, ranging from 60–100% of the total water flow moving through only 25–40% of the total water content. In agreement with the fact that geochemical conditions were similar in all experiments, phosphorus model results yield consistent first-order kinetic parameter values for the sorption–desorption process in two of the three soil monoliths; phosphorus transport through the third monolith cannot be modelled because the apparent mean transport rate of phosphorus is anomalously rapid relative to the non-adsorptive tritium transport. The occurrence of preferential flow alters the whole shape of the phosphorus breakthrough curve, not least the peak mass flux and concentration values, and increases the transported phosphorus mass by 2–3 times relative to the estimated mass transport without preferential flow in the two modelled monoliths.  相似文献   

11.
Although progress has been made toward understanding the surface chemistry of granular iron and the mechanisms through which it attenuates groundwater contaminants, potential long-term changes in the solute transport properties of granular iron media have until now received relatively little attention. As part of column investigations of alterations in the reactivity of granular iron, studies using tritiated water (3H(2)O) as a conservative and non-partitioning tracer were periodically conducted to independently isolate transport-related effects on performance from those more directly related to surface reactivity. Hydraulic residence time distributions (HRTDs) within each of six 39-cm columns exposed to bicarbonate solutions were obtained over the course of 1100 days of operation. First moment analyses of the data revealed generally modest increases in mean pore water velocity (v) over time, indicative of decreasing water-filled porosity. Gravimetric measurements provided independent estimates of water-filled porosity that were initially consistent with those obtained from 3H(2)O tracer tests, although at later times, porosities derived from gravimetric measurements deviated from the tracer test results owing to mineral precipitation. The combination of gravimetric measurements and 3H(2)O tracer studies furnished estimates of precipitated mineral mass; depending on the assumed identity of the predominant mineral phase(s), the porosity decrease associated with solute precipitation amounted to 6-24% of the initial porosity. The accumulation of mineral and gas phases led to the formation of regions of immobile water and increased spreading of the tracer pulse. Application of a dual-region transport model to the 3H(2)O breakthrough curves revealed that the immobile water-filled region increased from initially negligible values to amounts ranging between 3% and 14% of the total porosity in later periods of operation. For the aged columns, mobile-immobile mass transfer coefficients (k(mt)) were generally in the range of 0.1-1.0 day(-1) and reflected a slow exchange of 3H(2)O between the two regions. Additional model calculations incorporating sorption and reaction suggest that although changes in HRTD can have an appreciable effect on trichloroethylene (TCE) transformation, the effect is likely to be minor relative to that stemming from passivation of the granular iron surface.  相似文献   

12.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

13.
A routing procedure is introduced which accounts for the loss of a conservative solute tracer from preferred paths during macropore flow. Water flow is treated as a series of kinematic waves from which the tracer is lost due to mixing previously stored soil water, and an expression for solute loss is added to a previously developed model. The model parameters are estimated through experiments at three different input rates applied to a column of a macroporous forest soil.The results of seven experimental runs indicate that solute losses are consistently highest at the early stages of infiltration and drainage flow. An empirical relationship is proposed which links the frequency distribution of the flow parameter with that for solute loss from the preferred path during transient water flow and solute transport.  相似文献   

14.
In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am. J. 60, 1724] for one-dimensional advective-dispersive solute transport with linear equilibrium sorption and first-order degradation for time pulse sources to analyse soil column experimental data. Unlike most other moment solutions, these solutions consider the interplay of degradation and sorption. This permits estimation of a first-order degradation rate constant using the zeroth moment of column breakthrough data, as well as estimation of the retardation factor or sorption distribution coefficient of a degrading solute using the first moment. The method of temporal moment (MOM) formulae was applied to analyse breakthrough data from a laboratory column study of atrazine, hexazinone and rhodamine WT transport in volcanic pumice sand, as well as experimental data from the literature. Transport and degradation parameters obtained using the MOM were compared to parameters obtained by fitting breakthrough data from an advective-dispersive transport model with equilibrium sorption and first-order degradation, using the nonlinear least-square curve-fitting program CXTFIT. The results derived from using the literature data were also compared with estimates reported in the literature using different equilibrium models. The good agreement suggests that the MOM could provide an additional useful means of parameter estimation for transport involving equilibrium sorption and first-order degradation. We found that the MOM fitted breakthrough curves with tailing better than curve fitting. However, the MOM analysis requires complete breakthrough curves and relatively frequent data collection to ensure the accuracy of the moments obtained from the breakthrough data.  相似文献   

15.
Applied tracer tests provide a means to estimate aquifer parameters in fractured rock. The traditional approach to analysing these tests has been using a single fracture model to find the parameter values that generate the best fit to the measured breakthrough curve. In many cases, the ultimate aim is to predict solute transport under the natural gradient. Usually, no confidence limits are placed on parameter values and the impact of parameter errors on predictions of solute transport is not discussed. The assumption inherent in this approach is that the parameters determined under forced conditions will enable prediction of solute transport under the natural gradient. This paper considers the parameter and prediction uncertainty that might arise from analysis of breakthrough curves obtained from forced gradient applied tracer tests. By adding noise to an exact solution for transport in a single fracture in a porous matrix we create multiple realisations of an initial breakthrough curve. A least squares fitting routine is used to obtain a fit to each realisation, yielding a range of parameter values rather than a single set of absolute values. The suite of parameters is then used to make predictions of solute transport under lower hydraulic gradients and the uncertainty of estimated parameters and subsequent predictions of solute transport is compared. The results of this study show that predictions of breakthrough curve characteristics (first inflection point time, peak arrival time and peak concentration) for groundwater flow speeds with orders of magnitude smaller than that at which a test is conducted can sometimes be determined even more accurately than the fracture and matrix parameters.  相似文献   

16.
A solute transport model that describes nonequilibrium adsorption in soil/groundwater systems by mass transfer equations for film and intraparticle diffusion is presented. The model is useful in cases where breakthrough curve spreading cannot be explained by dispersion only. To evaluate its validity, the model was applied to several data sets from column experiments. The validity was also proved by a comparison with an analytical solution for the limiting case of predominating dispersion. Furthermore, a sensitivity analysis was performed to illustrate the influence of different process and sorption parameters (pore water velocity, intraparticle mass transfer coefficient, isotherm nonlinearity) on the shape of the calculated breakthrough curves. The application of the proposed model is discussed in comparison to the widely used dispersed flow/local equilibrium model, and a relationship between both models, which is based on a lumped parameter approach, is shown.  相似文献   

17.
Bacteriophage removal by soil passage in two field studies was re-analyzed with the goal to investigate differences between one- and two-dimensional modeling approaches, differences between one- and two-site kinetic sorption models, and the role of heterogeneities in the soil properties. The first study involved removal of bacteriophages MS2 and PRDI by dune recharge, while the second study represented removal of MS2 by deep well injection. In both studies, removal was higher during the first meters of soil passage than thereafter. The software packages HYDRUS-ID and HYDRUS-2D, which simulate water flow and solute transport in one- and two-dimensional variably saturated porous media, respectively, were used. The two codes were modified by incorporating reversible adsorption to two types of kinetic sites. Tracer concentrations were used first to calibrate flow and transport parameters of both models before analyzing transport of bacteriophages. The one-dimensional one-site model did not fully describe the tails of the measured breakthrough curves of MS2 and PRD1 from the dune recharge study. While the one-dimensional one-site model predicted a sudden decrease in virus concentrations immediately after the peaks, measured data displayed much smoother decline and tailing. The one-dimensional two-site model simulated the overall behavior of the breakthrough curves very well. The two-dimensional one-site model predicted a more gradual decrease in virus concentrations after the peaks than the one-dimensional one-site model, but not as good as the one-dimensional two-site model. The dimensionality of the problem hence can partly explain the smooth decrease in concentration after peak breakthrough. The two-dimensional two-site model provided the best results. Values for k(att2) and k(det2) could not be determined at the last two of four monitoring wells, thus suggesting that either a second type of kinetic sites is present in the first few meters of dune passage and not beyond the second monitoring well, or that effects of soil heterogeneity and dimensionality of the problem overshadowed this process. Variations between single collector efficiencies were relatively small, whereas collision efficiencies varied greatly. This implies that the nonlinear removal of MS2 and PRD1 is mainly caused by variations in interactions between grain and virus surfaces rather than by physical heterogeneity of the porous medium. Similarly, a two-site model performed better than the one-site model in describing MS2 concentrations for the deep well injection study. However, the concentration data were too sparse in this study to have much confidence in the fitted parameters.  相似文献   

18.
Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated approximately 2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.  相似文献   

19.
Chang CM  Wang MK  Chang TW  Lin C  Chen YR 《Chemosphere》2001,43(8):1133-1139
The predictive accuracy of using the one-dimensional advection–dispersion equation to evaluate the fate and transport of solute in a soil column is usually dependent on the proper determination of chemical retardation factors. Typically, the distribution coefficient (Kd) obtained by fitting the linear sorption isotherm has been extensively used to consider general geochemical reactions on solute transport in a low-concentration range. However, the linear distribution coefficient cannot be adequately utilized to describe the solute fate at a higher concentration level. This study employed the nonlinear equilibrium-controlled sorption parameters to determine the retardation factor used in column leaching experiments. Copper and cadmium transportation in a lateritic silty-clay soil column was examined. Through the explicit finite-difference calculations with a third-order total-variation-diminishing (TVD) numerical solution scheme, all results of the theoretical copper and cadmium breakthrough curves (BTCs) simulated by using the Freundlich nonlinear retardation factors revealed good agreement with the experimental observations.  相似文献   

20.
Organic substrates in reactive barrier systems are often heterogeneous material mixtures with relatively large contrasts in hydraulic conductivity and porosity over short distances. These short-range variations in material properties imply that preferential flow paths and diffusion between regions of higher and lower hydraulic conductivity may be important for treatment efficiency. This paper presents the results of a laboratory column experiment where denitrification is investigated using a heterogeneous reactive substrate (sawdust mixed with sewage sludge). Displacement experiments with a non-reactive solute at three different flow rates are used to estimate transport parameters using a dual porosity non-equilibrium model. Parameter estimation from breakthrough curves produced relatively consistent values for the fraction of the porosity consisting of mobile water (β) and the mass transfer coefficient (α), with average values of 0.27 and 0.42 d(-1), respectively. The column system removes >95% of the influent nitrate at low and medium flow, but only 50-75% of the influent nitrate at high flow, suggesting that denitrification kinetics and diffusive mass transfer rates are limiting the degree of treatment at lower hydraulic residence times. Reactive barrier systems containing dual porosity media must therefore consider mass transfer times in their design; this is often most easily accommodated by adjusting flowpath length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号