首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
We studied copper uptake by maize grown on soils that have been contaminated with CuSO4. In soil the total copper level ranged from 24 to 135 mg kg–1. The copper distribution in soil fractions was assessed by sequential extraction, showing that anthropogenic copper is mainly concentrated in oxides fractions. The copper concentration of maize at the maturity stage reached values from 36.3 to 65.9 mg kg–1 compared to copper levels usually found in non-contaminated crops (5–30 mg kg–1). Here we demonstrate that copper can be accumulated by maize and that copper concentration in maize can be predicted by equations including copper concentration of soil fractions.  相似文献   

2.
The atmospheric particulates from the Caracus Valley in Venezuela and the fluvial particulates transported by the Tuy River into the Caribbean sea have been evaluated for Pb, Cu and Zn with the purpose of determining the contamination levels in the study area. The atmospheric particulate samples were collected in the city of Caracas using a low volume sampler whereas the fluvial particulate were collected at the mouth of the Tuy River. The particulate samples were analysed by flame or graphite furnace atomic absorption spectrometry depending upon the concentration levels of the heavy metal under study. The results obtained for the fluvial particulates enabled estimates to be made of the total anthropogenic flux of Cu (383 ton year–1), Pb (528 ton year–1) and Zn (865 ton year–1). These results yield annual per capita inputs for Cu (96 g),Pb (132 g) and Zn (216 g) which greatly exceed those from global anthropogenic emissions. The weighted average concentration of Pb (1.13 %) found in the atmospheric particulates was much higher than those for Cu (140 mg kg–1) and Zn (200 mg kg–1) and reflects the high motor car traffic in the Caracas Valley. The anthropogenic/natural ratios estimated in this study were as follows: 2.6 for Pb; 1.5 for Cu and 1.5 for Zn. This indicates that anthropogenic inputs for Cu, Pb, and Zn in the study area exceed those from natural sources, cars being the major source for Pb and industrial activities the major sources for Cu and Zn.  相似文献   

3.
The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise,4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, availablephosphate and extractable calcium, magnesium and potassium contents, and heavy metal contentssuch as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The studyshowed that the average contents of organic matter, available phosphate, and extractable potassiumrapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, andonly 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils(0–15 cm depth) were 0.11 mg kg–1(ranged from 0 to 1.01), 4.70 mg kg–1(0–41.59), 4.84 mg kg–1(0–66.44), and 4.47 mg kg–1(0–96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn,and As in surface soils (0–15 cm depth) were 0.135 mg kg–1(ranged from 0 to 0.660), 2.77 mg kg–1(0.07–78.24), 3.47 mg kg–1(0–43.00), 10.70 mg kg–1(0.30–65.10), and 0.57 mg kg–1(0.21–2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg–1(ranging from 0 to 1.28), 4.82 mg kg–1(0–46.50), 2.68 mg kg–1(0–46.50), 31.19 mg kg–1(0.19–252.0), and 0.36 mg kg–1(0–4.98), respectively. In orchard fields, the averagecontents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0–20 cm depth) were 0.11 mg kg–1(ranged from 0–0.49), 3.62 mg kg–1(0.03–45.30), 2.30 mg kg–1(0–27.80), 16.60 mg kg–1(0.33–105.50),0.44 mg kg–1(0–4.14), and 0.05 mg kg–1(0.01–0.54), respectively. For polluted soils with over thewarning content levels of heavy metals, fine red earth application, land reconsolidation and soilamelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; landreformation; and heavy application of finered earth (up to 30 cm) were strongly recommended. Landuse techniques should be changed to beharmonious with the environment to increase yield andincome. Soil function characteristics should betaken into account.  相似文献   

4.
Cadmium contents of cultivated soils exposed to contamination in Poland   总被引:2,自引:0,他引:2  
Cadmium was measured in soils limed with industrial solid wastes, in cultivated lands located near waste yards and in soils of allotment gardens exposed to contamination. The median level and range of cadmium in soils of varying exposure to contamination was respectively: 0.3 mg kg–1 and 0.01–107 mg kg–1, 0.2 mg kg–1 and 0.02–2,198 mg kg–1, 0.4 mg kg–1 and 0.05–161 mg kg 1. Cadmium levels exceeded the value of 3 mg kg–1 considered permissible for arable soils in the samples of soils limed with wastes from the chemical industry (2.4%), the mining industry and metallurgy sites (2.1 %), in 12.4% samples of soils located in the neighbourhood of industrial waste storage yards and in 17.2% samples of soils from allotment gardens located on lands formerly used for waste storage.  相似文献   

5.
Despite its being highly mineralised, the Hope Mine area has become a residential district. Composite soil samples taken from 91 allotments show values for cadmium: < 2–220 mg kg–1, lead: 6–38,000 mg kg–1, and zinc: 66–40,000 mg kg–1. Water samples from adits contain 52–86 g kg–1 of lead and < 1–2 hg kg–1 of cadmium. The soil contents of cadmium and lead in at least two areas suggest that remedial actions should be considered. Blood lead levels for 33 children aged between ten months and seven years are in the range 5.7–57 g dl–1; haemoglobin levels vary between 9.7 and 12.7 mg dl–1. There is no obvious relationship between Pb and haemoglobin levels. Further geochemical work to define fully the spatial extent of the polluted region and epidemiological studies including intelligence testing to define further the effects of lead on children in this environment would be valuable.To whom correspondence should be addressed.  相似文献   

6.
The study of gold sites in the Migori Gold Belt, Kenya, revealed that the concentrations of heavy metals, mainly Hg, Pb and As are above acceptable levels. Tailings at the panning sites recorded values of 6.5–510 mg kg–1 Pb, 0.06–76.0 mg kg–1 As and 0.46–1920 mg kg–1 Hg. Stream sediments had values of 3.0–11075 mg kg–1 Pb, 0.014–1.87 mg kg–1 As and 0.28–348 mg kg–1 Hg. The highest metal contamination was recorded in sediments from the Macalder stream (11075 mg kg–1 Pb), Nairobi mine tailings (76.0 mg kg–1 As) and Mickey tailings (1920 mg kg–1 Hg). Mercury has a long residence time in the environment and this makes its emissions from artisan mining a threat to health. Inhaling large amounts of siliceous dust, careless handling of mercury during gold panning and Au/Hg amalgam processing, existence of water logged pits and trenches; and large number of miners sharing poor quality air in the mines are the major causes of health hazards among miners. The amount of mercury used by miners for gold amalgamation during peak mining periods varies from 150 to 200 kg per month. Out of this, about 40% are lost during panning and 60% lost during heating Au/Hg amalgam. The use of pressure burners to weaken the reef is a deadly mining procedure as hot particles of Pb, As and other sulphide minerals burn the body. Burns become septic. This, apparently, leads to death within 2–3 years. On-site training of miners on safe mining practices met with enthusiasm and acceptance. The use of dust masks, air filters and heavy chemical gloves during mining and mineral processing were readily accepted. Miners were thus advised to purchase such protective gear, and to continue using them for the sake of their health. The miners' workshop, which was held at the end of the project is likely to bear fruit. The Migori District Commissioner and other Government officials, including medical officers attended this workshop. As a result of this, the Government is seriously considering setting up a clinic at Masara, which is one of the mining centres in the district. This would improve the health of the mining community.  相似文献   

7.
The content and distribution of the lead in coal, gangue and the sulfur ball and the pyritic gangue of the Permo-Carboniferous in the North China Plate have been systematically studied (nearly 300 samples) in this paper. The Permo-Carboniferous coals in the North China Plate account for nearly 44.45 of total Chinese coal resources, and most of the steam coals in China come from the Permo-Carboniferous coals in the North China Plate. The result shows that lead content in the coal varied from 1.45 to 63.60 mg kg–1, averaging 23.95 mg kg–1; the lead content of the sulfur ball and the pyritic gangue in the coal seam ranges from 70.26–1060 mg kg–1, with an average of 271.28 mg kg–1; the lead content of the gangue is from 29.5 to 77.81 mg kg–1, averaging at 40.77 mg kg–1. The lead in the coal seam is mainly concentrated in the pyrite, such as sulfur ball, pyritic gangue or pyrite, and is the least concentrated in the organic of coal. The content of the lead has a direct ratio with the ash and the pyretic sulfur. Coal washing can reduce the content of the pyretic sulfur and the lead.  相似文献   

8.
In order to assess the potential of As and heavy metal contamination derived from past mining activity and to estimate the human bioavailability quotients for As and heavy metals. Tailings, soils and crop samples were collected and analysed for As, Cd, Cu, Pb and Zn. The mean concentrations of As, Cd, Cu, Pb and Zn in the tailings were 68.5, 7.8, 99, 3,754 and 733 µg g–1, respectively. Maximum Pb concentration in tailings was up to 90 times higher than its tolerable level. The concentrations of these metals were highest in the soils from the dressing plant area, and decreased in the order: farmland soil to paddy soil. In particular, some of the soils from the dressing plant area contained more than 1% of Pb and Zn. The pollution index ranged from 0.19 to 1.93 in paddy soils, and from 1.47 to 3.60 in farmland soils. The average concentrations of heavy metals in crops collected from farmland were higher than those in rice stalks or rice grains, and higher than the internationally accepted limits for vegetables. Element concentrations extracted from farmland soils within the simulated human stomach for 1 h are 9.4 mg kg–1 As, 3.8 mg kg–1 Cd, 37 mg kg–1 Cu, 250 mg kg–1 Pb and 301 mg kg–1 Zn. In particular, the extracted concentrations of Cd, Pb and Zn are in excess of the tolerable levels. The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion (by inhalation and from dirty hands) of soils by the local population could pose a potential health threat due to long-term toxic element exposure.  相似文献   

9.
Much attention is paid to soil health and environmental safety. Earthworms are an important indicator of soil ecosystem health and safety. Ecological toxicity of acetochlor and excessive urea, in both their single and joint effects, on earthworm Esisenia foelide was thus studied using the soil-culture method. Acetochlor had an enhanced toxicity from low concentration to high concentration. The mortality of earthworms after a 6-day exposure was changed from 0 to 86.7%, and the weight change rate ranged from 7.86 to –30.43%, when the concentration of acetochlor was increased from 164 to 730 mg kg–1. Urea expressed its positive and beneficial effects on earthworms when its concentration was lower than 500 mg kg–1. Strongly toxic effects took place when the concentration of urea was higher than 1000 mg kg–1. The mortality of earthworms exposed to urea reached 100% when its concentration was more than 1500 mg kg–1. When the concentration of urea was lower than 500 mg kg–1, there were antagonistic effects between the two agrochemicals on earthworms; when the concentration of urea was higher than 500 mg kg–1, joint toxic effects of acetochlor and excessive urea on earthworms were synergic. In any case, excessive urea application is very harmful to the health of soil ecosystems.  相似文献   

10.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

11.
The objective was to derive predictive equations for acetic acid-extractable cobalt (A-ECo) in soils so that extensive national databases for total (T) Co in soils and stream sediments could be converted to plant available concentrations for the purpose of predicting risk of Co deficiency in grazing livestock. Data on the chemical and physical properties of 103 soils from 15 different parent materials and 54 soil series in England and Wales were used. Ranges for the mean values for parent materials were: TCo, 5.0–20.4 and A-ECo, 0.20–1.30 mg kg–1; percentage (P) A-ECo, 3.4–13.5; soil manganese (Mn) 268–1174 mg kgDM–1; pH, 3.7–8.0. There were significant effects of parent material on all parameters with Chalks, Old and New Red Sandstones particularly low in A-ECo. Multiple linear regression yielded the following equation for predicting A-ECo, which accounted for 56% of the variance with 12 outliers, including the lowest pH values, omitted:A-ECo(mg kg-1) = 1.4 - 0.0619TCo (mg kg-1) - 0.432TMn(g kg-1) - 0.171pHPrediction of PA-ECo was less precise:PA-ECo(%) = 21.1 - 4.5TMn(g kg-1) - 1.77pH(r 2 = 44.8%; 88 d.f.REML was used on the complete, unbalanced, log-transformed data set to fit a Generalised Mixed Model with parent material as random effect and soil Mn and pH as fixed effects; the effect of parent material was no longer significant. It was concluded that A-ECo can be satisfactorily predicted for most soils in England and Wales from TCo, TMn and soil pH.  相似文献   

12.
The solution culture, paddy soil culture and the simulation experiments in the laboratory were conducted to clarify the interactions between selenium and phosphorus, and its effects on the growth and selenium accumulation in rice. Results revealed that a suitable supply of selenium could promote rice growth and excessive selenium could injure rice plant, causing lower biomass, especially in the roots. The supply of selenite could enhance the selenium contents of rice shoots and roots in solution culture and in soil culture. The selenium concentrations in roots were much higher than those in shoots supplied with the same rates of selenium and phosphorus. The interaction between selenium and phosphorus was evident. When the phosphorus supply increased to meet the needs of plant growth, phosphorus could promote absorption and accumulation of selenium in the shoots. If the phosphorus supply was excessive, phosphorus could inhibit the accumulation of selenium in the shoots at the lower selenite level (2 mol l–1), but could not at the higher selenite level (10 mol l–1). With the supply of phosphate increased, the selenium concentrations in the roots decreased significantly at both selenite levels. The presence of phosphate could decrease Se sorption on the soil surface and increase the selenium concentration in the soil solution. The concentrations of selenium in shoots and roots supplied with 0.08 g kg–1 phosphorus were lower than those with no phosphorus supplied. With the increase of phosphorus added to 0.4 g kg–1, the selenium concentration in shoots and roots increased. The effect of phosphorus on the concentration was statistically significant at all three selenium levels.  相似文献   

13.
Effects of Cadmium on Nutrient Uptake and Translocation by Indian Mustard   总被引:1,自引:0,他引:1  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10–190 mg Cd kg–1 to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg–1 dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg–1 d.w. in the roots and 160 mg kg–1 d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg–1, and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg–1, then remained constant with Cd treatments from 110 to 190 mg kg–1. However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

14.
We investigated the spatial distribution of Pb in soil and dust samples collected from 54 sites in Shenyang city, Liaoning province, Northeast China. Soil background Pb concentration was 22 mg kg−1 and control values from non-industrial areas were 33 mg kg−1 for soil and 38 mg kg−1 for dust. Soil Pb concentrations varied widely, ranging from 26 to 2911 mg kg−1, with a mean concentration of 200 mg kg−1, 9 times the background value and 6 times the control value. There was great variation in soil Pb, with a coefficient of variation (CV) of 1.06 and a standard deviation (SD) of 212 mg kg−1. Dust Pb concentrations fluctuated from 20 to 2810 mg kg−1, with a mean value of 220 mg kg−1, almost 6 times the control value. No significant differences in distribution were observed between soil Pb and dust Pb. The highest Pb concentration was observed in Tiexi district in an industrial area. Soil Pb concentration decreased with depth and with distance from the pollution source. Lead concentrations initially changed little but then decreased with distance from the roadside, and were generally higher on the east side of roads than on the west. Lead contents in different categories of urban area differed substantially with dust and soil Pb concentrations decreasing in the sequence: industrial >business >mixed (residential, culture and education)> reference areas.  相似文献   

15.
Mycorrhizal and non-mycorrhizal alfalfa (Medicago sativa) was grown in pots containing soil artificially contaminated with various levels of benzo[a]pyrene (B[a]P)(0, 1, 10 and 100 mg kg–1). Soil and plants were sampled after 30, 40, 50, 60 and 90 days and compared with unlanted pots. The percentage of mycorrhizal root length colonized by Glomus caledoniun was not significantly affected by the addition of B[a]P up to 10 mg kg–1 but was significantly lower at 100 mg kg–1B[a]P compared with low concentrations (p < 0.05). There was no difference in soil polyphenol oxidase and dehydrogenase activity among the controls and applications of 1 and 10 mg kg–1 of B[a]P. However, enzyme activities were significantly higher at 100 mg kg–1B[a]P compared with the other three treatments, and there was no mycorrhizal effect. Over a period of 90 days the concentration of B[a]P in soil in which alfalfa was grown was significantly lower than in unplanted soil (p < 0.05). Degradation rates of B[a]P added at 1, 10 and 100 mg kg–1 without G. caledonium were 76, 78 and 53%, and with mycorrhizal inoculation were 86, 87 and 57%. The degradation rate in unplanted soil was significantly lower than in planted soil, and was significantly higher in medium- and low-B[a]P treatments than in the high B[a]P concentration tested. There is a possibility of enhancement phytoremediation of PAHs in rhizosphere soil with arbuscular mycorrhizal fungi.  相似文献   

16.
This paper reports a study of the distribution of organo-chlorine pesticides (DDT and HCH) between rice plants and the soil system by spraying before the heading stage at four different dosage levels – control, normal dosage (15 kg ha–1 of 6% HCH and 7.5 kg ha–1 of 25% DDT), double dosage and four times dosage. Soil and plant samples were taken respectively at the 1st h, 3rd, 10th, 20th, and 40th day after spraying and at the harvest time. The results indicate that less than 5% of HCH and 15% of DDT were absorbed by the surface of rice leaves for normal dosage. Most of both pesticides moved into the soil in solution after spraying. Compared with DDT, HCH was degraded and run off more easily. HCH residues in the surface soil layer (1–3 cm) were already below 6.4 g kg–1 at the mature stage, lower than Chinese Environmental Quality Standard for Agricultural Soils: HCH <0.05 mg kg–1. However DDT residues in the surface soil layer remained 172 g kg–1, higher than the national standard: DDT <0.05 mg kg–1. According to the test f OCP residues in rice seeds, it can be concluded that the OCP sprayed onto the surface of rice leaves can move into rice plants and accumulate in the seeds at the mature stage. HCH residues in rice seeds of the double and four times dosage treatments, and DDT residues in all treatments, exceeded the Chinese National Food Standard (HCH <0.10 mg kg–1, DDT <0.20 mg kg–1).  相似文献   

17.
Previous research has demonstrated that many urban soils are enriched in Pb, Cd and Zn. Culture of vegetable crops in these soils could allow transfer of potentially toxic metals to foods. Tanya lettuce (Lactuca sativa L.) was grown in pots of five urban garden soils and one control agricultural soil to assess the effect of urban-soil metal enrichment, and the effect of soil amendments, on heavy metal uptake by garden vegetables. The amendments included NPK fertilizer, limestone, Ca(H2PO4)2, and two rates of limed sewage sludge compost. Soil Cd ranged from 0.08 to 9.6 mg kg–1; soil Zn from 38 to 3490 mg kg–1; and soil Pb from 12 to 5210 mg kg–1. Lettuce yield on the urban garden soils was as great as or greater than that on the control soil. Lettuce Cd, Zn and Pb concentrations increased from 0.65, 23, and 2.2 mg kg–1 dry matter in the control soil to as high as 3.53, 422 and 37.0 mg kg–1 on the metal-rich urban garden soils. Adding limestone or limed sewage sludge compost raised soil pH and significantly reduced lettuce Cd and Zn, while phosphate fertilizer lowered soil pH and had little effect on Zn but increased Cd concentration in lettuce. Urban garden soils caused a significant increase in lettuce leaf Pb concentration, especially on the highest Pb soil. Adding NPK fertilizer, phosphate, or sludge compost to two high Pb soils lowered lettuce Pb concentration, but adding limestone generally did not. On normally fertilized soils, Pb uptake by lettuce was not exceptionally high until soil Pb substantially exceeded 500 mg kg–1. Comparing garden vegetables and soil as potential sources of Pb risk to children, it is clear that the risk is greater through ingestion of soil or dust than through ingestion of garden vegetables grown on the soil. Urban dwellers should obtain soil metal analyses before selecting garden locations to reduce Pb risk to their children.  相似文献   

18.
Selenium was determined from 25 topsoils and 25 plants in the semi-arid Central Spain where large extents of soils are developed on evaporitic materials. Some species of vegetation associated with them are of the genera Astragalus, Salsola, Mercurialis, Phlomis, Thymus and Atriplex. Total selenium in soils was determined and its bioavailability assessed by chemical sequential fractionation. Se content in soils was adequate (in the range 0.17–0.39 mg kg−1) or large (in the range 0.50–4.38 mg kg−1) and appeared in highly and/or potentially available forms. Several plant species showed high Se levels (in the range 5–14.3 mg kg−1), which can be a potential risk of toxicity to animals. Data obtained from the study area can be used as a guide to the range of values in soils and plants of the European Mediterranean area that are relatively unpolluted from industrial sources, allowing comparison with more polluted areas.  相似文献   

19.
In Penaeus japonicus, the tolerance to ammonia increased with the development from nauplius to late juvenile. The 48-h LC50 of ammonia in nauplii (III–V), 96-h LC50 in zoeae (I–III), mysis (I–III), post-larvae (PL1) and late juveniles (10.4±1.1 g) were respectively 5.0, 6.1 to 8.1, 9.4 to 10.9, 15.5 and 52.7 mg Nl-1 (0.5, 0.6 to 0.7, 0.9, 1.3 and 3.1 mg NH3–Nl-1). In a chronic experiment (20 d), the LC50 in post-larvae (PL1) was 19.1 (1.4) at 96 h and 16.2 mg Nl-1 (1.3 mg NH3–Nl-1) at 480 h. Osmoregulatory capacity (OC) was calculated as the osmotic gradient between the hemolymph and the external medium at given salinities. The effects of ammonia on OC, Na+ and Cl- regulation and gill Na+–K+ ATPase activity in late juveniles were examined in fullstrength seawater, SW (1050 mosm kg-1, 36 S) and in dilute SW (450 mosm kg-1, 15%.), after 48 or 96 h exposure to various concentrations of ammonia. Ambient ammonia disrupted both hypo- and hyper-osmoregulation; decreased OC resulted from impaired Na+ and Cl- regulation. Gill Na+–K+ ATPase activity increased in SW and was not affected in dilute SW. The decrease of OC was ammonia-dose-dependent. The threshold ammonia concentrations affecting hypo-OC and hyper-OC were, respectively, 16 (1.3) and 32 mg Nl-1 (2.3 NH3–Nl-1) for a 48 h exposure; these concentrations were lower than the 48-h LC50 value, 65.3 mg Nl-1 (3.5 NH3–Nl-1). The time course of exposure to sublethal ammonia (48 mg Nl-1) demonstrated that the effect on osmoregulation was time-dependent. This effect was also temporary, and the exposed shrimps recovered control OC values after removal of excessive ambient ammonia. The possibility of using OC as an indicator of physiological condition in osmoregulating crustaceans and the acting mode of ammonia on osmotic and ionic regulation are discussed.  相似文献   

20.
Seasonal population dynamics of the gammarid Acanthostepheia malmgreni Goës in Conception Bay, Newfoundland, were examined from October 1998 to November 2000. This species exhibited a 2.5-year life span, with the reproductive cycle correlating with seasonal phytoplankton flux. Females were semelparous and died following a 5-month brooding period and the subsequent release of juveniles in April and May. The biennial life cycle of this population should result in the presence of two cohorts in the hyperbenthos at any given time. However, the cohorts alternated in strength from year to year, which affected annual density, biomass and production during the study period. Densities were 64±87 ind. per 100 m3 in 1999 and 491±492 ind. per 100 m3 (mean±SD) in 2000. Secondary production was estimated at 18–44 mg C m–2 in 1999 and 180–311 mg C m–2 in 2000. The annual P/B ratios were 0.89 and 2.27 in 1999 and 2000, respectively. Growth varied both among and within cohorts, with different life-history stages exhibiting variable growth rates ranging from 0 to 12 mg dry mass month–1.Communicated by J.P. Grassle, New Brunswick  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号