首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polychaetes belonging to the genus Capitella are often present in high numbers in organic-rich sediments polluted with, e.g., oil components, and Capitella spp. may have a great impact on the biogeochemistry of these sediments. We examined the influence of Capitella sp. I on microbial activity in an organic-rich marine sediment contaminated with the polycyclic aromatic hydrocarbon, fluoranthene. Capitella sp. I were added to microcosms (10 000 ind m−2) and the impact of a pulse-sedimentation of fluoranthene-contaminated sediment (3 mm layer) was studied for a period of 12 d after sedimentation. The sediment oxygen uptake and total sediment metabolism (TCO2 production) increased in cores with worms (71 to 131%), whereas the anaerobic activity, measured as sulfate reduction rate 12 d after sedimentation, was lower compared to cores without worms. The effect of fluoranthene on sulfate reduction was most pronounced in the presence of worms, with a 34% reduction versus 16% in cores without worms. The reduced sulfur pools in cores with worms were smaller than in cores without worms, suggesting that the reduced anaerobic activity was caused by increased oxidation of the sediment, which may favor O2 and other electron-acceptors (e.g. NO3 , Fe3+, Mn4+) in organic matter decomposition. The sediment oxygen uptake and TCO2 production did not show significant changes due to fluoranthene treatment, indicating that these parameters were either less sensitive to fluoranthene stress or recovered more rapidly (i.e. within 48 h) than sulfate reduction rates. Bioturbation by Capitella sp. I altered the depth profile of fluoranthene such that fluoranthene was found in deeper sediment layers (down to 2 cm) where diffusional loss and microbial breakdown probably are reduced relative to surface layers. In cores without worms, fluoranthene was found down to 1 cm, with 75% remaining in the upper 5 mm. Received: 5 December 1996 / Accepted: 11 February 1997  相似文献   

2.
This study investigated the occurrence and ontogenetic changes of halogenated secondary metabolites in planktotrophic and lecithotrophic larvae and adults of two common, infaunal polychaetes, Streblospio benedicti (Spionidae) and Capitella sp. I (Capitellidae), with different life-history traits. S. benedicti contains at least 11 chlorinated and brominated hydrocarbons (alkyl halides) while Capitella sp. I contains 3 brominated aromatic compounds. These halogenated metabolites are potential defense compounds benefiting both larvae and adults. We hypothesized that: (1) planktotrophic larvae contain halogenated metabolites because they are not protected by adult defenses, (2) quantitative and qualitative variation of planktotrophic larval halogenated metabolites parallels that of adults, and (3) brooded lecithotrophic larvae initiate the production of halogenated metabolites only after metamorphosis. To address these hypotheses, volatile halogenated compounds from polychaete extracts were separated using capillary gas chromatography and identified and quantified using mass spectrometry with selected ion monitoring. All four life stages (pre- and post-release larvae, new recruits, adults) of both S. benedicti and Capitella sp. I contained the halogenated metabolites previously identified from adults. This is the first report of halocompounds identified and quantified in polychaete larvae. Allocation of potential defense compounds to offspring varied as a function of species, feeding type and developmental stage. Pre-release larvae of S. benedicti with planktotrophic development contained the lowest concentration of total halogenated metabolites (1.75 ± 0.65 ng mm−3), post-release and new recruits contained intermediate concentrations (8.29 ± 1.72 and 4.73 ± 2.63 ng mm−3, respectively), and planktotrophic adults contained significantly greater amounts (28.9 ± 9.7 ng mm−3). This pattern of increasing concentrations with increasing stage of development suggests synthesis of metabolites during development. Lecithotrophic S. benedicti post-release larvae contained the greatest concentrations of halometabolites (71.1 ± 10.6 ng mm−3) of all S. benedicti life stages and developmental types examined, while the amount was significantly lower in new recruits (34.0 ± 15.4 ng mm−3). This pattern is consistent with a previously proposed hypothesis suggesting a strategy of reducing potential autotoxicity during developmental transitions. Pre-release lecithotrophic larvae of Capitella sp. I contained the highest concentration of total halogenated metabolites (1150 ± 681 ng mm−3), whereas the adults contained significantly lower total amounts (126 ± 68 ng mm−3). All concentrations of these haloaromatics are above those known to deter predation in previously conducted laboratory and field trials. As a means of conferring higher larval survivorship, lecithotrophic females of both species examined may be expending more energy on chemical defenses than their planktotrophic counterparts by supplying their lecithotrophic embryos with more of these compounds, their precursors, or with energy for their synthesis. This strategy appears common among marine lecithotrophic larval forms. Received: 14 July 1999 / Accepted: 20 January 2000  相似文献   

3.
Body volume growth rate, dry tissue weight, organic carbon content, and nucleic acid content (RNA and DNA) of individual Capitella sp. I were measured after 14 d of exposure to natural sediment, sediment contaminated with fluoranthene (in acetone) and sediment treated with acetone only. Exposure to 101 μg fluoranthene g−1 sediment dry wt during 2 weeks reduced body volume specific growth rate by 50%. Dry tissue weight and carbon content were also lower in fluoranthene-exposed worms. However, when corrected for differences in body volume, worms from fluoranthene-contaminated sediment had a higher dry weight and carbon content per unit body volume than worms from the control and acetone treatments. Part, but not all, of the reduction in body volume growth rate in response to fluoranthene may have been due to a reduction in tissue water content. The correlation between RNA:DNA ratio (which has previously been used as a predictor of recent growth rate) and worm growth rate was weak in the control group and was significantly influenced by sediment treatment. Not only did the fluoranthene-exposed worms have a lower growth rate than expected based on their RNA:DNA ratio, but analysis of this group separately indicated that measured growth rate was independent of the RNA:DNA ratio. Our results not only confirm previous indications of a weak relationship between nucleic acid content and actual growth, but indicate that empirical, predictive relationships between these variables measured under favorable growth conditions should not be extrapolated to predict growth under toxicant-stressed conditions. Received: 6 April 1997 / Accepted: 7 May 1997  相似文献   

4.
Polychaetes constitute most of the benthic macroinvertebrates in estuarine and coastal environments. We investigated the utilization of organic matter in two polychaete species, Capitella sp. I and Perinereis nuntia brevicirris, living in different coastal habitats. The protease activity of Capitella sp. I (89.7 μg mg−1) was about 10 times that of P. nuntia brevicirris (8.0 μg mg−1). High cellulase (endo-β-1,4-glucanase) activity was detected in P. nuntia brevicirris (3.2 μg mg−1), whereas scarcely any was detected in Capitella sp. I. We isolated cDNA clones of protease mRNA from Capitella sp. I and of cellulase mRNA from P. nuntia brevicirris. The high protease activity of Capitella sp. I enabled it to survive in the sediment under a fish farm, where it degrades organic matter. In contrast, the high cellulase activity of the estuary-dwelling P. nuntia brevicirris allowed it to degrade organic matter originating from terrestrial areas.  相似文献   

5.
T. S. Bridges 《Marine Biology》1996,125(2):345-357
The investment made by a reproducing organism in its offspring can be affected by both extrinsic (environmental) and intrinsic (female condition) factors. The purpose of this study, conducted between December 1990 and June 1992, was to examine the influence of organic additions to sediment, and female age and size, on patterns of offspring investment and performance in the opportunistic polychaete Capitella sp. I (cf. Capitella capitata Farbricius). Sediment treatments were composed of marsh mud enriched with sewage or algae, or spiked with #2 fuel oil. All three of these additions are associated with opportunistic responses in Capitella sp. I populations in the laboratory and field. As a means of comparison,effects of sewage additions were also examined on the spionid Streblospio benedicti Webster. Organic additions to mud had no detectable effect on the C or N content of embryos in either species. However, sewage had a positive effect on juvenile performance in Capitella sp. I. Juveniles produced by adult Capitella sp. I in the sewage treatment grew 2 times larger (in 2 wk) than juveniles produced by adults in the mud treatment when these juveniles were raised in the same sediment type (mud). Such effects may facilitate opportunistic responses in Capitella sp. I offspring by reducing time to first reproduction. In addition to treatment sediment effects, maternal age and size had a strong influence on patterns of offspring investment in Capitella sp. I. The material investiment measured in collected embryos declined with maternal age in the oil and sewage treatments. The C:N ratio of embryos increased with maternal age for Capitella sp. I except in the algae treatment, which showed no effect of maternal age. Juvenile growth decreased with maternal age in the sewage treatment for Capitella sp. I. Maternal size appeared to have a positive effect on embryo investment in the mud and oil treatments, where reproducing worms were smallest. Previous studies of Capitella sp. I have documented a broad range of environmentally induced responses in growth and fecundity.The results of this study emphasize the importance of maternal environment, age, and size effects on the relationship between offspring investment and performance.Such effects may have profound consequences for the dynamics of populations and the fitness of individuals. Present address: WES-ES-F, USAE Waterways Experiment Station, 3909 Halls Ferry Rd., Vicksburg, Mississippi 39180-6199, USA  相似文献   

6.
 The abundance and biomass of Corophium multisetosum Stock, 1952 were determined from benthic corer samples collected monthly over 1 yr in the upper reaches of Canal de Mira (Ria de Aveiro, Portugal). Both density and biomass over the sampling period were negatively correlated with water temperature and positively correlated with chlorophyll a concentration in the sediment. C. multisetosum density was significantly negatively correlated with plant biomass and positively correlated with salinity. The nature of the sediment, favourable environmental conditions, high availability of food and low interspecific competition allowed the population to reach a maximal density of 200 × 103 individuals m−2 and a maximal biomass (ash-free dry wt, AFDW) of 62 gAFDW m−2. The population was highly productive, especially during the autumn/winter period. Production, estimated by two different methods (Hynes method: 251 gAFDW m−2 yr−1; Morin–Bourassa method: 308 gDW m−2 yr−1), was much higher than the values reported for other Corophium species. The annual P:Bˉ ratio (10) was high, but similar to values reported for Swedish populations of C. volutator and lower than the values estimated from Mediterranean populations of C. insidiosum. Received: 8 October 1999 / Accepted: 22 June 2000  相似文献   

7.
 A distinct smell of dimethylsulfide (DMS) was noted at the edge of the intertidal mudflat of Marennes-Oléron Bay, at the French Atlantic coast, where dense populations of the marine flatworm Convoluta roscoffensis Graff (Platyhelminthes: Turbellaria) were present. DMS is the cleavage product of dimethylsulfoniopropionate (DMSP). DMSP was shown to be present in high amounts in sediment containing the flatworm as well as in axenic cultures of the symbiotic alga Tetraselmis sp. that was isolated from the flatworm. In untreated sediment samples containing C. roscoffensis the concentration of DMS was as high as ∼55 μmol l−1 sediment, and in samples that were fixed with glutaraldehyde the concentration of DMS was even three orders of magnitude higher (∼66 mmol l−1 sediment). This rapid cleavage of DMSP to DMS in fixed samples was unexpected. Pure DMSP was stable in glutaraldehyde, and it was therefore concluded that a DMSP-lyase was responsible for cleavage in the field samples. The isolated symbiotic alga, Tetraselmis sp., did not show DMSP-lyase activity, indicating that DMSP-lyase may have been present in the flatworm, although the role of bacteria could not be excluded. The Chl a-specific DMSP content of C. roscoffensis (∼200 mmol g−1) was much higher than that of Tetraselmis sp. (∼30 mmol g−1). Possibly, DMSP was not only present in the symbiotic alga, but was also incorporated in the body tissue of the flatworm. It remains unclear what the function of DMSP is in C. roscoffensis. In Tetraselmis sp., but not in C. roscoffensis, DMSP increased with increasing salinity. It was concluded that salinity probably does not play an important role in the dynamics of DMSP and DMS in sediment containing C. roscoffensis. Received: 21 January 2000 / Accepted: 29 August 2000  相似文献   

8.
The cosmopolitan polychaete Capitella capitata, known as a complex of opportunistic sibling species, usually dominates the macrobenthos of polluted or unpredictable environments. A population of C. capitata, termed Capitella sp. M, was found in a shallow water hydrothermal vent area south of Milos (Greece). Here, this population occurs close to vent outlets (termed the “transition zone”), an environment with steep gradients of temperature, salinity and pH and increased sulphide concentrations of up to 710 μM. The field distribution of C. capitata in relation to sulphide concentrations around the vent outlets was investigated and sulphide tolerance experiments were conducted on laboratory-cultured worms to elucidate possible adaptations of Capitella sp. M to these extreme environmental conditions. In order to investigate whether the population from the Milos hydrothermal vent area can be considered a distinct sibling species within the C. capitata complex, crossbreeding experiments and analysis of general protein patterns were conducted with Capitella sp. M and three other C. capitata populations of different ecological ranges. Capitella sp. M showed high resistance (median survival time: 107 ± 38 h) to anoxia plus high sulphide concentrations of 740 μM. It seems that the ability to survive high-sulphide conditions in combination with reduced interspecific competition enables the polychaete to maintain a continuous population in this rigorous habitat. From the extremely high tolerance to anoxia and sulphide, shown in both the crossbreeding experiments and the analysis of total proteins, it can be concluded that Capitella sp. M from the Milos hydrothermal vent area represents a separate sibling species within the C. capitata complex. Received: 3 March 1997 / Accepted: 12 September 1997  相似文献   

9.
A marine algicidal gliding bacterium Cytophaga sp. strain J18/M01 was isolated in 1990 from a station in northern Harima-Nada, the Seto Inland Sea, Japan, using the harmful red tide alga Chattonella antiqua (Hada) Ono as a susceptible organism. The bacterium can prey upon various species of microalgae. Temporal fluctuations of this bacterium and Chattonella spp. [C. antiqua and C. marina (Subrahmanyan) Hara et Chihara] were investigated weekly at the above station in the summer of 1997 and 1998, using immunofluorescence assay employing highly specific polyclonal antibodies for the bacterium. In the summer of 1997, the cell density of Chattonella spp. showed a maximum value (70 cells ml−1) on 8 July, and decreased thereafter. The bacterium Cytophaga sp. J18/M01 was commonly detected around a few hundreds of cells per milliliter or less. The number of Cytophaga sp. J18/M01 increased after the peak of Chattonella spp., and the maximum cell number of the bacterium was 1350 ml−1. This algicidal bacterium also followed the changes of total amounts of microalgal biomass (chlorophyll a+pheophytin) when Chattonella spp. were absent. In the summer of 1998, Chattonella spp. were relatively less abundant (maximum 21 cells ml−1), and the algicidal bacterium Cytophaga sp. J18/M01 showed a close relationship with the change of total microalgal biomass. The present study suggests that the algicidal bacterium Cytophaga sp. J18/M01 preyed upon, not only harmful red tide microalgae, but also other common microalgae such as diatoms, and the bacterium presumably plays an important role in regulating microalgal biomass in natural marine environments. Received: 20 April 2000 / Accepted: 1 December 2000  相似文献   

10.
Deposit-feeders can respond to seasonal fluctuations in food concentration both functionally (e.g. by adjusting feeding rates) and physiologically (e.g. by changing the concentration of bacteriolytic agents in gut fluids). Laboratory feeding experiments were carried out (11 to 21 July 1997) with the arenicolid polychaete worm Abarenicola pacifica (Healy and Wells). Objectives were to test for separate and interactive effects of sediment food concentration and temperature (6, 11, and 16 °C) on deposit-feeder functional (feeding rates) and physiological (bacteriolytic activity of gut fluids) responses. Food concentration was varied experimentally using sieved (1 mm) natural sediments (Md φ=2.00; 0.6% organic) mixed with combusted (500 °C, 8 h) sediments for final concentrations of 25, 50, and 100% natural sediment. Sediment food quality was measured as: (1) bioavailable amino acids (EHAA), (2) chlorophyll a (chl a), and (3) bacterial abundance. Feeding rates were inferred from egestion rates (ER, g h−1) and analyzed with respect to worm size. Bacteriolytic activity of midgut fluids was assayed turbidimetrically against two bacterial isolates, after worms had fed on experimental sediments for 15 d. Temperature and food concentration both significantly affected feeding rates, with maxima occurring at 50 and 100% natural sediment mixtures, and at high (16 °C) temperature. ER was positively, but not significantly correlated with EHAA and chl a; a positive, significant correlation was detected between ER and sediment bacterial abundance. Overall, functional responses agreed with earlier compensatory intake models for deposit-feeders. However, the size and direction of these responses was temperature-sensitive, suggesting that these models need to be adjusted for changes in absorption rates. No effects of ambient temperature or food concentration on bacteriolytic rates were observed, possibly due to compensatory mechanisms or the presence of multiple bacteriolytic agents in gut fluids. Received: 28 June 1999 / Accepted: 14 March 2000  相似文献   

11.
Cultures of asexually reproducing populations of the oligochaete Paranaislitoralis (Müller) collected from six different patches (3 to 50 m apart) on an intertidal mud flat in Flax Pond, New York, on two occasions, June and October 1993, showed significant differences among lines in life span, number of offspring produced, and in finite rate of increase (λ). Although growth rates were significantly lower in October than in June, they were always positive (λ > 1) in the laboratory cultures reared in field-collected sediment, while field data show that the densities of P. litoralis decreased sharply in summer and autumn from a seasonal high in early June. Cultures of worms reared at high densities without renewal of sediment crashed, and effects on individuals were irreversible: worms from late (declining) stages of population growth had a significantly higher mortality and lower reproduction than worms from earlier stages, also when transferred to high-quality food. Genetical analysis using RAPDs (random amplified polymorphic DNA) confirmed the existence of several clones of P. litoralis in our cultures. Experiments where parent and offspring were cultured in sediments of different qualities showed clone–environment interactions in the number of asexual offspring produced, but not in age at first reproduction. Clones also differed in that some showed significant parental effects of sediment quality on life-history characteristics while other clones did not. Our results indicate that P.litoralis populations in Flax Pond are not an example of a population subdivided into a set of permanent source and sink subpopulations, but rather an example of a continuously shifting mosaic of local growth conditions. Received: 21 April 1997 / Accepted: 3 September 1997  相似文献   

12.
The talitrid amphipod Uhlorchestia spartinophila lives in close association with standing-dead leaves of the smooth cordgrass Spartina alterniflora Loisel in salt marshes along the Atlantic coast of North America. This study probed the strength of the trophic link between the amphipod population and the decomposition process in this detrital-based ecosystem. We measured survival, growth and reproductive output in groups of amphipods reared for 6 wk on five diets derived from sheath and blade portions of S. alterniflora leaves just prior to (senescent) and during (dead) decomposition. In unfed treatments, the daily specific mortality rate was 0.391 and starved amphipods survived no longer than 11 d. Among the fed treatments, a diet of senescent sheaths resulted in the lowest survival (20%) and yielded no offspring. Groups fed senescent blades, dead sheaths, dead blades and unwashed dead sheaths had survival rates of 56 to 84% and produced 5.0 to 12.5 offspring replicate−1. Sex ratio usually favored females, but approached unity in treatments with high overall survival, suggesting that quality of available food resources may influence sex ratio in this species. Mean specific growth rates (mm mm−1 d−1) ranged from 0.013 to 0.016, and matched previous estimates of growth from field populations. Overall ecological performance (survival + growth + reproduction) was similar for all food treatments, except senescent sheaths, which yielded a final mean (±SD) dry biomass (0.4 ± 0.42 mg replicate−1) of amphipods significantly lower than that of other diets (1.7 ± 0.81 to 2.6 ± 0.69 mg replicate−1). Natural diets derived from decomposing cordgrass leaves can fulfill the nutritional requirements of U. spartinophila populations, but variation in initial amounts of living fungal biomass among the five experimental diets only partially explained the responses of amphipods in our experiment. Structural characteristics and variation in rates of fungal occupation within different portions of cordgrass leaves may affect the amphipod's ability to access plant production made available by decomposers. Received: 12 December 1996 / Accepted: 18 December 1996  相似文献   

13.
The isopod Munnopsurus atlanticus occupies bathyal depths in both the Bay of Biscay (NE Atlantic; between 383 and 1022 m) and in the Catalan Sea (Northwestern Mediterranean; between 389 and 1859 m). The species was dominant in both assemblages, reaching bathymetric peaks of abundance on the upper part of the continental slope (400 m depth) in the Bay of Biscay and at ˜600 m in the Catalan Sea. Both the Atlantic and the Mediterranean populations are bivoltines. Demographic analysis of the Bay of Biscay population revealed the production of two generations per year with different potential longevity (5 mo for G1 and 11 mo for G2). The mean cohort-production interval (CPI) was estimated at 8 mo, and results of the demographic analysis were also used to estimate production for the Catalan Sea populations. Mean annual density (D) and biomass (B) were higher in the Bay of Biscay (D = 356.7 individuals 100 m−2; B = 0.803 mg dry wt m−2 yr−1) than in the Mediterranean (D = 16.3 individuals 100 m−2; B = 0.078 mg dry wt m−2 yr−1). Also, mean annual production was an order of magnitude higher in the Atlantic (between 4.063 and 4.812 mg dry wt 100 m−2 yr−1 depending on the method used) than in the Catalan Sea (between 0.346 and 0.519 mg dry wt 100 m−2 yr−1). M. atlanticus feeds on a wide variety of benthic and pelagic food sources. In both study areas, phytodetritus was not important in the diet of M. atlanticus. In contrast, gut-content data suggested an indirect coupling with phytoplankton production in both areas via foraminiferans. The life history and the recorded production are considered in respect to both the dynamics and levels of primary production and the total mass flux in the respective study areas. Differences in the secondary production of both populations seemed to be more consistently explained by differences in total mass flux than by differences in the primary production levels; this is also consistent with the variety of food sources exploited by M. atlanticus. Received: 22 February 1999 / Accepted: 3 February 2000  相似文献   

14.
Growth rates and development times were determined for nauplii of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total naupliar development time was short: 3 to 4 d inshore and 4 to 5 d offshore. Mean instantaneous growth rates (g) ranged from as high as 0.90 d−1 for Parvocalanuscrassirostris to as low as 0.41 d−1 for Corycaeus spp. In general, nauplii of cyclopoid copepods appeared to grow more slowly than those of calanoids of the same size. Naupliar growth rates were significantly related to body size (r 2 = 0.43 to 0.50), but were unrelated to chlorophyll concentration in any measured size-fraction. This suggests that nauplii are generally not limited by resources, but are growing at their maximum temperature and size-dependent rates. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

15.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

16.
The benthic dinoflagellate Gambierdiscus spp. is the primary causative agent of ciguatera fish poisoning in French Polynesia. However, the initiation of ciguatera outbreaks and the factors that control ciguatoxin production in this dinoflagellate are still poorly understood. In this paper, we present some original data concerning the seasonal abundance and toxicity of natural populations of Gambierdiscus spp. based on a long-term survey in a ciguateric site of the island of Tahiti. From February 1993 to December 1997, Gambierdiscus spp. population densities were monitored weekly in the Atimaono barrier reef of Papara in relation to temperature and salinity. Densities peaked at 4992 cells g−1 in October 1994 and constituted ≥1000 cells g−1 on several occasions. A total of 58 blooms were recorded in the area, of which 65% occurred in 1995 and 1996 alone. Our data confirmed the high endemicity of Gambierdiscus spp. in the Papara area. Refined analysis of our raw data by a principal-component analysis of processes (PCAP) revealed a seasonality in cell densities from February 1993 to May 1995. During this period, Gambierdiscus spp. populations tended to reach maximum abundance at the beginning and end of the hot season. In contrast, salinity did not appear to be a determining factor in the seasonal abundance of this dinoflagellate. The noticeable increase in both peak densities and frequency of blooms further noticed in 1995 and 1996 was preceded by unusually high water temperatures in January to April 1994, concomitant with a severe coral-bleaching episode. During the course of the study, a total of 303 × 106 cells obtained from 48 successive blooms was harvested. Toxicity screening revealed that toxin production was maximum from October 1994 through December 1996. No correlation was found between toxicity of these blooms and their biomass nor the seasonal pattern of temperatures. It is suggested that the toxicity of naturally-occurring blooms of Gambierdiscus spp. and, consequently, the severity of ciguatera incidents in a given area, is mainly dependent on the clonal nature of cells which coexist within local populations of this dinoflagellate. Received: 12 October 1998 / Accepted: 15 June 1999  相似文献   

17.
Production rates, chlorophyll concentrations and general composition of periphytic diatom communities growing on glass slides were studied in relation to environmental parameters during one seasonal cycle in the Bay of Paranaguá, southern Brazil. Slides were routinely submersed at 1, 2 and 3 m depth and recovered weekly for microscopic examinations, analyses of chlorophyll, cell counts and in situ photosynthetic incubations using the Winkler titration method. Water samples were also collected at surface and bottom layers for determinations of temperature, salinity, nutrients and chlorophyll in the water. The periphytic community was mainly formed by epipelic and epipsammic species, dominated by Navicula phyllepta, Cylindrotheca closterium, Navicula spp. and Amphora sp. Weekly chlorophyll a and cell accumulations on slides varied from <1–32 mg m−2 and up to 31 × 108 cells m−2, respectively. Photosynthetic rates varied from <1 to 35 mg oxygen mg chlorophyll a −1 h−1, with higher values in summer. Daily production varied from 5 to 3,600 mg oxygen m−2 day−1 (<0.01–1.4 g carbon m−2 day−1). Multiple regression analysis revealed that vertical differences in light conditions and grazing pressure jointly affected the influence of temperature on the seasonal patterns of cell densities and chlorophyll concentrations according to depth. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

18.
A. Grémare 《Marine Biology》1994,119(3):367-374
During a preliminary set of experiments (April 1987). I measured short-term (20 d) reproductive responses of laboratory-cultured Capitella sp. 1 at 20°C, at four daily ration levels (0.26 to 2.60 mg of organic nitrogen per bowl), and for four food types: Gerber's mixed cereals, Ulva sp., diatoms, and Tetramen fish food. Average female body size, number of fertile segments, and fecundity were significantly affected both by food type and food ration. Average fecundities ranged from 21 (Gerber, 0.26 mg N d-1) to 448.3 eggs per female (Tetramen, 2.60 mg N d-1). During a second set of experiments (May 1987), I measured the reproductive response of laboratory-cultured Capitella sp. 1 at 20°C at six ration levels of spring and summer sediment-trap material collected in the Patuxent Estuary, Maryland, USA. Worms raised on these two diets failed to reproduce during the period of this experiment. I used simple and miltiple linear-regression models to describe relationships between fecundity and daily rations and macro- (dry wt, C, N) and micronutrients (essential amino- and essential fatty acids). These models were carried out on three data sets corresponding to either 4 or 6 food types. The results suggest that different nutritional factors may be limiting for different foods. However micronutrients and especially essential amino acids probably more aptly describe nutritional limitation of reproduction in Capitella sp. 1.  相似文献   

19.
The genetic relationships between morphologically indistinguishable marine and brackish populations of Syllis gracilis Grube, 1840 (Polychaeta: Syllidae) were studied by means of allozyme electrophoresis. Samples of S. gracilis from marine coastal and brackish-water habitats were examined for variation at 13 presumptive loci. In addition, a sample of the closely related species S. prolifera (Krohn, 1852) was analysed. Five loci were multiallelic in at least one population of S. gracilis and eight loci in S. prolifera. Low to moderate levels of within-population genetic variability were found, with average expected heterozygosity values ranging from H = 0.068 (±0.043 SE) to 0.187 (±0.069 SE) in the populations of S. gracilis; higher values were found in S. prolifera (H = 0.325 ± 0.076). The presence of various private alleles indicated a marked genetic divergence among populations of S. gracilis, with Nei's genetic distances ranging from D = 0.000 to 0.833 and a highly significant F ST value. Furthermore, evidence for strong genetic heterogeneity between two sympatric marine populations was found. UPGMA cluster analysis and multidimensional scaling pointed out a clear genetic divergence between brackish and marine populations. At least two genetically divergent entities occurred in marine and brackish habitats. This could be due to local adaptation of individuals coming from marine populations to brackish habitats, but more presumably to the occurrence of a species complex within S. gracilis. Received: 6 June 1999 / Accepted: 7 February 2000  相似文献   

20.
Growth and development rates were determined for nauplii of Calanus finmarchicus (Gunnerus) in the near-shore waters of a western Norwegian fjord from in situ mesocosm incubations. The major food source for the nauplii was diatoms, but Phaeocystis sp., dinoflagellates and ciliates were also part of the diet. At local temperatures ranging from 4.8 to 5.2 °C the cumulative median development time from hatching to Nauplius VI was 19 d. The time taken to molt to the next naupliar stage was approximately constant (3 d) from Stages IV to VI, but Stage III needed the longest development time (5 d). The instantaneous growth rate in terms of body carbon was negative from hatching to Nauplius Stage II, but as high as 0.25 to 0.30 d−1 from Stage III to V. Enhancement of food resources by nutrient addition led to no significant change in specific growth rates. Additionally, the cohorts from different nutrient regimes showed almost equal development time, size and body carbon within stages. Length–weight relationships of nauplii from the two different food resources were: W low resources = 4.17 × 10−6 × L 2.03 (r 2 = 0.84) and W high resources = 4.29 × 10−6 × L 2.05 (r 2 = 0.92), where weight (W) is in micrograms of C and body length (L) in micrometers. The natural body morphology of naupliar stages I to VI is illustrated with digital images, including the final molt from Nauplius VI to Copepodid Stage I. In general, development of the nauplii was faster than that of the copepodids of C. finmarchicus, and structural growth was exponential from naupliar stages III to VI. This study validates our earlier results that nauplii of C. finmarchicus can obtain high growth and nearly maximal developmental rates at relatively low food levels (∼50 μg C l−1), suggesting that nauplii exhibit far less dependence on food supply than copepodids. Received: 30 July 1999 / Accepted: 7 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号