首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Presence, distribution and transport mechanisms of the four major synthetic surfactants -linear alkylbenzene sulfonates (LAS), alkyl ethoxysulfates (AES), nonylphenol ethoxylates (NPEOs) and alcohol ethoxylates (AEOs)- have been simultaneously studied in different aquatic ecosystems. Urban wastewater discharges and industrial activities were identified as the main sources for these compounds and their metabolites. LAS, AES and carboxylic metabolites remained in the dissolved form (87–99%). However, NPEOs and AEOs were mostly associated with particulate matter (65–86%), so their degradation in the water column was limited due to their lower bioavailability. It was also observed that sorption to the particulate phase was more intense for longer homologs/ethoxymers for all surfactants. With respect to surface sediments, AES levels were considerably below (<0.25 mg/kg) the values detected for LAS and NPEOs. Concentrations of AEOs, however, were occasionally higher (several tens of ppm) than those found for the rest of the target compounds in several sampling stations.  相似文献   

2.
Membrane-enclosed sorptive coating (MESCO) is a miniaturised monitoring device that enables integrative passive sampling of persistent, hydrophobic organic pollutants in water. The system combines the passive sampling with solventless preconcentration of organic pollutants from water and subsequent desorption of analytes on-line into a chromatographic system. Exchange kinetics of chemicals between water and MESCO was studied at different flow rates of water, in order to characterize the effect of variable environmental conditions on the sampler performance, and to identify a method for in situ correction of the laboratory-derived calibration data. It was found that the desorption of chemicals from MESCO into water is isotropic to the absorption of the analytes onto the sampler under the same exposure conditions. This allows for the in situ calibration of the uptake of pollutants using elimination kinetics of performance reference compounds and more accurate estimates of target analyte concentrations. A field study was conducted to test the sampler performance alongside spot sampling. A good agreement of contaminant patterns and water concentrations was obtained by the two sampling techniques.  相似文献   

3.
The occurrence of five pharmaceuticals, consisting of four anti-inflammatory and one antiepileptic drug, was studied by passive sampling and grab sampling in northern Lake Päijänne and River Vantaa. The passive sampling was performed by using Chemcatcher® sampler with a SDB-RPS Empore disk as a receiving phase. In Lake Päijänne, the sampling was conducted during summer 2013 at four locations near the discharge point of a wastewater treatment plant and in the years 2013 and 2015 at four locations along River Vantaa. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations of carbamazepine, diclofenac, ibuprofen, ketoprofen, and naproxen in Lake Päijänne determined by passive sampling ranged between 1.4–2.9 ng L?1, 15–35 ng L?1, 13–31 ng L?1, 16–27 ng L?1, and 3.3–32 ng L?1, respectively. Similarly, the results in River Vantaa ranged between 1.2–40 ng L?1, 15–65 ng L?1, 13–33 ng L?1, 16–31 ng L?1, and 3.3–6.4 ng L?1. The results suggest that the Chemcatcher passive samplers are suitable for detecting pharmaceuticals in lake and river waters.  相似文献   

4.
Passive sampling of dissolved pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler consisting of a C18 Empore disk receiving phase saturated with n-octanol and fitted with low density polyethylene membrane, was developed and calibrated for the measurement of time weighted average (TWA) concentrations of hydrophobic pollutants in water. In this study, the exchange kinetics were modelled to obtain a better understanding of the mechanism of the accumulation process and to enable the measurement of TWA concentrations of hydrophobic pollutants in the field. An empirical relationship that enables the calculation of in situ sampling rates of chemicals using performance reference compounds was derived and its application was demonstrated in a field study in which TWA aqueous concentrations estimated from sampler data for target analytes were compared with TWA concentrations obtained from spot samples of water collected regularly during the sampler deployment period.  相似文献   

5.
Passive sampling is a powerful method for continuous pollution monitoring, but calibration experiments are still needed to generate sampling rates in order to estimate water concentrations for polar compounds. We calibrated the Chemcatcher device with an uncovered SDB-XC Empore disk as receiving phase for 12 polar and semi-polar pesticides in aquatic environments in flow-through tank experiments at two water flow velocities (0.135 m/s and 0.4 m/s). In the 14-day period of exposure the uptake of test substances in the sampler remained linear, and all derived sampling rates R(s) were in the range of 0.1 to 0.5 L/day. By additionally monitoring the release of two preloaded polar pesticides from the SDB-XC disks over time, very high variation in release kinetics was found, which calls into question the applicability of performance reference compounds. Our study expands the applicability of the Chemcatcher for monitoring trace concentrations of pesticides with frequent occurrence in water.  相似文献   

6.
A carbonyl sampler originally designed for the active sampling method (Sep-Pak XPoSure) was used for long-term passive sampling, and its applicability as a passive sampler was examined through field experiments. The uptake rates of passive sampling were determined experimentally from collocated passive and active samplings for various sampling periods. The obtained uptake rates of formaldehyde, acetaldehyde, and acetone were 1.48, 1.23, and 1.08 mL/min, respectively. These uptake rates were consistent for a wide range of the sampling term (12 hr-2 weeks). Uptake rates of each carbonyl were proportional to the diffusion coefficients of each. Therefore, the ratios of diffusion coefficients were used to calculate the uptake rates of carbonyls for which the rates were not determined experimentally. Lower limits of determination were 2.16-17.5 microg/m3 for 2-week sampling. It was confirmed that 2-week monitoring of carbonyl concentrations up to 118-229 microg/m3 was possible. Relative standard deviations of the passive method generated from the repeatability test were 2-12.3% error for five samplings, and the recovery efficiencies were larger than 90%. Thus, the passive sampler was found to be highly suitable for long-term monitoring of carbonyl compounds.  相似文献   

7.
壬基酚聚氧乙烯醚在印染废水处理工艺中的去除研究   总被引:1,自引:0,他引:1  
为减少印染助剂壬基酚聚氧乙烯醚(nonylphenol ethoxylates,NPEO)及其降解产物壬基酚(nonylphenol,NP)随印染废水进入水体造成的不利环境影响,对2种常规印染废水处理净水工艺处理含NPEO的模拟印染废水效率开展了研究。研究发现,结合厌氧水解和曝气氧化的生物处理工艺能迅速地将废水中NPEO去除,去除率达到90%以上,但排水中残余一定含量的NP、短链NPEO和短链壬基酚聚氧乙烯醚酸酯(nonylphenol polyethoxycarboxylate,NPEC),在减少排水中NP、短链NPEO和短链NPEC浓度方面,接触氧化法比活性污泥法效果更好。排水中的NP和短链NPEO来自厌氧水解阶段长链NPEO的降解;减少排水中NP、短链NPEO需要减少厌氧水解阶段产生的短链NPEO。  相似文献   

8.
Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.  相似文献   

9.

Introduction

This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone.

Methods

The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers.

Results

There was an agreement (R 2?=?0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42???g?m?3 for an exposure period of 1?week, and the sampler can be stored safely for a period of up to 8?weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21?mL?min?1 in a very good agreement with the theoretical uptake rate (10.32?mL?min?1). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R 2?=?0.93) between two passive samplers.

Conclusions

The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.  相似文献   

10.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

11.
Gao M  Zeng Z  Sun B  Zou H  Chen J  Shao L 《Chemosphere》2012,86(2):190-197
Despite the great success of time-weighted average passive sampling of hydrophobic contaminants, such as PCBs and PAHs, the sampling of polar organic compounds still presents a challenge because the equilibrium between water and most sampling phases is attained in a relatively short time. In this study, we proposed a new time-integrative sampler using in situ solvent extraction (TISIS) for polar organic chemicals. The sampler was composed of a 15 cm poly(dimethylsiloxane) (PDMS) tubing, with an internal diameter of 0.5 mm and wall thickness of 0.5 mm, through which an extraction solvent (acetonitrile) was passed. Four polar organic contaminants, caffeine, atrazine, diuron and 17α-ethynylestradiol, were chosen for the evaluation of the performance of the sampler. Without the use of in situ solvent extraction, the PDMS tubing when exposed to a constant aqueous concentration of the four model compounds was able to linearly accumulate those compounds for less than 12 h and equilibrium between the PDMS tubing and water was attained in 2 d under our laboratory conditions. However, TISIS when exposed to a constant aqueous concentration was able to linearly accumulate all the model compounds without any exposure time limitation. The measured sampling rates at three different extraction flow rates (0.2, 0.5, 1.5 mL min−1) were similar, regardless of the chemicals, indicating that the overall mass transfer from aqueous solution to the extraction solvent was most likely dominated by partitioning to the PDMS tubing and the internal diffusion within PDMS. In addition, a pulsed exposure experiment confirmed that TISIS operated in a time-integrative mode when the environmental concentration was highly fluctuated.  相似文献   

12.
O'Brien D  Bartkow M  Mueller JF 《Chemosphere》2011,83(9):1290-1295
The use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (Rs) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers. The use of the passive flow monitor (PFM) has been introduced for the assessment of site-specific changes in water flow. In the presented study we have demonstrated that the Rs at which both atrazine and prometryn are accumulated within the SDB-RPD-Empore disk is dependent on the flow conditions. Further, the calibration of the measured Rs for chemical uptake by the SDB-RPD-Empore disk to the mass lost from the PFM has shown that the PFM provides an accurate measure of Rs for flow velocities from 0 to 16 cm s−1. Notably, for flow rates >16 cm s−1, a non linear increase in the Rs of both herbicides was observed which indicates that the key resistance to uptake into the SDB-RPD Empore disk is associated with the diffusion through the overlying diffusion limiting membrane. Overall the greatest uncertainty remains at very low flow conditions, which are unlikely to often occur in surface waters. Validation of the PFM use has also been undertaken in a limited field study.  相似文献   

13.
The application of in-tissue passive sampling to quantify chemical kinetics in fish bioconcentration experiments was investigated. A passive sampler consisting of an acupuncture needle covered with a PDMS tube was developed together with a method for its deployment in rainbow trout. The time to steady state for chemical uptake into the passive sampler was >1 d, so it was employed as a kinetically limited sampler with a deployment time of 2 h. The passive sampler was employed in parallel with the established whole tissue extraction method to study the elimination kinetics of 10 diverse chemicals in rainbow trout. 4-n-nonylphenol and 2,4,6-tri-tert-butylphenol were close to or below the limit of quantification in the sampler. For chlorpyrifos, musk xylene, hexachlorobenzene, 2,5-dichlorobiphenyl and p,p′-DDT, the elimination rate constants determined with the passive sampler method and the established method agreed within 18%. Poorer agreement (35%) was observed for 2,3,4-trichloroanisole and p-diisopropylbenzene because fewer data were obtained with the passive sampling method due to its lower sensitivity. The work shows that in-tissue passive sampling can be employed to measure contaminant elimination kinetics in fish. This opens up the possibility of studying contaminant kinetics in individual fish, thereby reducing the fish requirements and analytical costs for the determination of bioconcentration factors.  相似文献   

14.
Cheng CY  Wu CY  Wang CH  Ding WH 《Chemosphere》2006,65(11):2275-2281
Concentrations of degradation products of nonylphenol polyethoxylates (NPEOs) were analyzed in river water samples in order to determine the distribution characteristic of these alkylphenolic compounds in 18 major rivers of Taiwan. The degradation products of NPEOs were detected in all river samples, with the dicarboxylates alkylphenolic degradation products (CAPEC) being detected most frequently and at the highest concentrations. Concentrations of NP and NP1EO in rivers ranged from n.d. to 5.1 μg l−1 and n.d. to 0.5 μg l−1, respectively. The total concentrations of shortened carboxylates (i.e., NP1EC + NP2EC + NP3EC) and dicarboxylates alkylphenolic degradation products (CAP1EC + CAP2EC) ranged from n.d. to 63.6 μg l−1 and n.d. to 94.6 μg l−1, respectively. Concentrations of NP2EC, NP3EC and all CAPEC residues were determined semi-quantitatively by comparing with the internal standard. Significantly higher concentrations of CAPEC residues were detected in the river waters as compared to those of NP, NP1EO and NPEC degradation products and the average proportions of these compounds in the samples of the rivers were as follows: NP + NP1EO was 5 ± 2.5%, total NPEC was 25 ± 12%, and total CAPEC was 70 ± 12%. The high concentration ratios of CAPEC/NPEC illustrate that aerobic biodegradation plays a main route in the fate of NPEO in the rivers of Taiwan.  相似文献   

15.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

16.
Two headwaters located in southwest France were monitored for 3 and 2 years (Auvézère and Aixette watershed, respectively) with two sampling strategies: grab and passive sampling with polar organic chemical integrative sampler (POCIS). These watersheds are rural and characterized by agricultural areas with similar breeding practices, except that the Auvézère watershed contains apple production for agricultural diversification and the downstream portion of the Aixette watershed is in a peri-urban area. The agricultural activities of both are extensive, i.e., with limited supply of fertilizer and pesticides. The sampling strategies used here give specific information: grab samples for higher pesticide content and POCIS for contamination background noise and number of compounds found. Agricultural catchments in small headwater streams are characterized by a background noise of pesticide contamination in the range of 20–70 ng/L, but there may also be transient and high-peak pesticide contamination (2000–3000 ng/L) caused by rain events, poor use of pesticides, and/or the small size of the water body. This study demonstrates that between two specific runoff events, contamination was low; hence the importance of passive sampler use. While the peak pesticide concentrations seen here are a toxicity risk for aquatic life, the pesticide background noise of single compounds do not pose obvious acute nor chronic risks; however, this study did not consider the risk from synergistic “cocktail” effects. Proper tools and sampling strategies may link watershed activities (agricultural, non-agricultural) to pesticides detected in the water, and data from both grab and passive samples can contribute to discussions on environmental effects in headwaters, an area of great importance for biodiversity.  相似文献   

17.
GOAL, SCOPE, AND BACKGROUND: The xenoestrogens bisphenol A, 4-tert-octylphenol, and the technical isomer mixture of 4-nonylphenol (tech. 4-nonylphenol) belong to the group of chemicals which are called endocrine disrupters due to their property of causing hormonal dysfunctions in the endocrine system of organisms at very low concentrations. Bisphenol A, 4-tert-octylphenol, and the tech. 4-nonylphenol (mixture of isomers) were determined in water samples collected from the influent and effluent of two German wastewater treatment plants (WWTP) during a long-time sampling period from February 2003 till August 2005 to assess their occurrence and temporal variations in WWTPs. METHODS: The compounds were extracted and concentrated from water by solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). RESULTS: The influent concentrations were as follows: Bisphenol A < limit of detection of the method (< ldm)--12,205 ng L(-1), tech. 4-nonylphenol < ldm--10,186 ng L(-1), and 4-tert-octylphenol 39-1,495 ng L(-1). The measured effluent concentrations were lower with values in the range of < ldm--7,625 ng L(-1) for bisphenol A, < ldm--14,444 ng L(-1) for tech. 4-nonylphenol, and < ldm--392 ng L(-1) for 4-tert-octylphenol. All target compounds were largely eliminated during the wastewater treatment process. The elimination efficiency varied between 73% and 93%. DISCUSSION: All analytes show highly fluctuating influent concentrations with very high peak concentrations at particular sampling times. The variation of effluent concentrations is by far lower than the variation of influent concentrations. For tech. 4-nonylphenol, a significant temporal concentration variation has been detected with very high concentrations up to the microgram-per-liter level in the time from February 2003 till July 2003 and clearly decreasing concentrations in the time from June 2004 till August 2005. This corresponds well with the implementation of Directive 2003/53/EC (nonylphenol and nonylphenol ethoxylates in the European Union "may not be placed on the marked or used as a substance or constituent of preparations in concentrations equal or higher than 0.1% by mass") from January 2005 on. Bisphenol A is present in the effluent samples in a wide range of concentrations from below the detection limit to high concentrations up to the microgram-per-liter level. For 4-tert-octylphenol, no particular trend of concentration development has been observed. CONCLUSIONS: Combined SPE and GC-MS proved to be an efficient method to identify and quantify polar organic compounds in environmental samples. With respect to the concentrations measured in the present study, bisphenol A sometimes is the prominent compound in influent samples. Neither bisphenol A nor 4-tert-octylphenol or tech. 4-nonylphenol show seasonal variations. However, there was a significant general trend of decreasing concentrations of tech. 4-nonylphenol in influent and effluent samples from both WWTPs which probably reflects the implementing Directive 2003/53/EC. RECOMMENDATIONS AND PERSPECTIVES: Further research is needed to investigate whether the observed decrease of tech. 4-nonylphenol concentrations in German WWTPs since June 2004 will continue further on. The reason for the high effluent concentrations of bisphenol A in only a few samples has to be clarified in further research. The results from this study provide insight into the concentration development of the xenoestrogens bisphenol A, tech. 4-nonylphenol, and 4-tert-octylphenol in WWTPs in the time span between 2003 and 2005.  相似文献   

18.

Background, aim, and scope

The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5?µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.

Materials and methods

The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.

Results

The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.

Discussion

The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.

Conclusions

TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves’ of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.

Recommendations and perspectives

Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
  相似文献   

19.
Alkylphenol polyethoxylates (APEOs) have been widely used as nonionic surfactants in a variety of industrial and commercial products. Typical compounds are nonylphenol polyethoxylates (NPEOs) and octylphenol polyethoxylates (OPEOs), which serve as precursors to nonylphenol (NP) and octylphenol (OP), respectively. NP and 4-t-OP are known to have endocrine disrupting effects on fish (medaka, Oryzias latipes), so it is important to know the concentrations of APEOs in the environment. Because the analytical characteristics of these compounds depend on the length of the ethoxy chain, it is necessary to use appropriate compounds as internal standards or surrogates. We synthesized two 13C-labeled surrogate compounds and used these compounds as internal standards to determine NPEOs and OPEOs by high-performance liquid chromatography (LC)-mass spectrometry. Method detection limits were 0.015 microg/L for NP (2)EO to 0.037 microg/L for NP(12)EO, and 0.011 microg/L for OP(3,6)EO to 0.024 microg/L for OP (4)EO. NPEO concentrations in water from a sewage treatment plant were less than 0.05-0.52 microg/L for final effluent and 1.2-15 microg/L for influent. OPEO concentrations were less than 0.05-0.15 microg/L for the final effluent and less than 0.05-1.1 microg/L for influent.  相似文献   

20.
Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer followed by chromatographic fractionation and detection of CPs using two different GCMS techniques. Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were determined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length, chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are a suitable passive sampling system for the monitoring of atmospheric CPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号