首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comprehensive experimental investigation for an inclined ( $60^{\circ }$ to vertical) dense jet in perpendicular crossflow—with a three-dimensional trajectory—is reported. The detailed tracer concentration field in the vertical cross-section of the bent-over jet is measured by the laser-induced fluorescence technique for a wide range of jet densimetric Froude number $Fr$ and ambient to jet velocity ratios $U_r$ . The jet trajectory and dilution determined from a large number of cross-sectional scalar fields are interpreted by the Lagrangian model over the entire range of jet-dominated to crossflow-dominated regimes. The mixing during the ascent phase of the dense jet resembles that of an advected jet or line puff and changes to a negatively buoyant thermal on descent. It is found that the mixing behavior is governed by a crossflow Froude number $\mathbf{F} = U_r Fr$ . For $\mathbf{F} < 0.8$ , the mixing is jet-dominated and governed by shear entrainment; significant detrainment occurs and the maximum height of rise $Z_{max}$ is under-predicted as in the case of a dense jet in stagnant fluid. While the jet trajectory in the horizontal momentum plane is well-predicted, the measurements indicate a greater rise and slower descent. For $\mathbf{F} \ge 0.8$ the dense jet becomes significantly bent-over during its ascent phase; the jet mixing is dominated by vortex entrainment. For $\mathbf{F} \ge 2$ , the detrainment ceases to have any effect on the jet behavior. The jet trajectory in both the horizontal momentum and buoyancy planes are well predicted by the model. Despite the under-prediction of terminal rise, the jet dilution at a large number of cross-sections covering the ascent and descent of the dense jet are well-predicted. Both the terminal rise and the initial dilution for the inclined jet in perpendicular crossflow are smaller than those of a corresponding vertical jet. Both the maximum terminal rise $Z_{max}$ and horizontal lateral penetration $Y_{max}$ follow a $\mathbf{F}^{-1/2}$ dependence in the crossflow-dominated regime. The initial dilution at terminal rise follows a $S \sim \mathbf{F}^{1/3}$ dependence.  相似文献   

2.
In this study a numerical simulation is performed to investigate the effect of ambient density stratification on the characteristic of a vertical buoyant jet in a stably linearly stratified ambient cross-stream. Based on the ensemble integral method, the theoretical formulation for such a flow field consists of a set of elliptic Reynolds-averaged equations incorporating with the k– transport equations for the turbulence closure. An oscillating motion can be observed in the computed jet trajectory, and the corresponding alternative variation of dominant quantities for the induced momentum and buoyancy of the jet are examined by direct integration on a cross-section along the jet axis. The influences on the jet development both by the ambient cross-stream and the stratification are investigated. The oscillation characteristic shows that a linear relation holds between the wavenumber of jet trajectory, crossflow velocity and the Brunt–Väisälä frequency of ambient stratification. Computational results indicate that the formation of the secondary and a third pairs of vortices, which are not induced in the unstratified environment, causes the jet flow oscillation from its maximum height-of-rise in the flowing direction. The ambient stratification prohibits the growth of the plume radius and reduces the mixing rate as well as the plume rise. The developed flow indicates the transformation of entrainment mechanism in stratified crossflow.  相似文献   

3.
60° inclined dense jets had been recommended for brine discharges from desalination plants to achieve a maximum mixing efficiency. However, the terminal rise associated with 60° is relatively high and thus the angle may be too large for disposal in shallow coastal wasters. In this study, we investigate the mixing behavior of dense jets discharging at smaller angles of 30° and 45° in a stationary ambient. Combined Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) were used as the measurement approaches that captured the velocity and concentration fields, respectively. Based on the experimental results, the characteristic geometrical features of the inclined dense jets, including the location of the centerline peak and the return point where the dense jet returns to the source level, etc., are quantified. The mixing and diluting behaviors are also revealed through the analysis of the axial and cross-sectional velocity and concentration profiles. In addition to the free inclined discharges, the present study also examines the effect of the proximity to the bed. Through the comparison of the results between two experimental series with distinct z 0/D but overlapping z 0/L M , the latter is identified as the deciding factor for the boundary influence.  相似文献   

4.
This paper presents an experimental study of the interactions of three fully-submerged, coplanar impinging jets issued from long pipes. The jets were neutrally buoyant and were arranged symmetrically about the axis of a central jet, with two side jets set to intersect with the central jet at two inclination angles (30° and 45°) and three Reynolds numbers (4240, 6400 and 8000). Measurements of the flow fields were performed using particle image velocimetry to examine the flow structures in various planes, i.e., the jet axis plane (XY), the jet normal plane (XZ) and the cross-sectional plane (YZ). This flow configuration results in pronounced interactions among the three jets, and hence better mixing than that of a canonical single pipe jet as illustrated by augmented centreline velocity decay, spreading rate and turbulence level. The jets at the inclination angle of 45° impinge and mix more rapidly than those at 30°. For each case, the flow is highly 3-dimensional, and jet development displayed several distinct regions (converging, merging and combining) along the streamwise direction. The expansion of flow in the XY plane is similar to the shape of a hyperbola with necking formed immediately downstream of the impinging point, whereas that in the XZ plane assumes the shape of a parabola with an open rim exhibiting a pronounced velocity deficit in the central part of the combining flow. Self-similarity of streamwise mean velocity is explored in the combining region of the flow on the two planes of symmetry (XY and XZ). Flow development in the combining region is dominated by large-scale vortical structures, including von Kárman-like spanwise vortices in the XY plane and secondary circulation in the form of two pairs of counter-rotating streamwise vortices in the Y–Z plane.  相似文献   

5.
Much study has been performed on the mixing properties of submerged, turbulent buoyant jets. It is safe to say that the problem of estimating dilution rates in vertical buoyant jets spreading in an `infinitely deep' ambient water has been more than adequately resolved by previous researchers. However, the majority of environmental applications involve discharges into ambient waters of finite depths in which a bounding surface serves to re-direct the impinging buoyant jet horizontally into a radial spreading layer. Previous research indicates that this impinging jet undergoes additional mixing before buoyancy stabilizes vertical mixing and confines the spreading layer to the vicinity of the bounding surface. Unfortunately, the conceptualization and subsequent mathematical modeling of this additional mixing phenomenon is surrounded by considerable amount of disagreement between researchers. The purpose of this study is to provide, by means of velocity and concentration profile measurements, independent experimental evidence for the existence of a critical flow state immediately downstream of the active mixing zone in the horizontally flowing, radial flow that forms after impingement. It is further shown that this critical flow state must be expressed in terms of a composite Froude Number that takes into account the possibility of a non-zero exchange layer flow. Finally, the influence of the presence of a sill-like topographic downstream control on the criticality of the radial flow immediately downstream of the active mixing zone is also investigated.  相似文献   

6.
Flows in a compound open-channel (two-stage geometry with a main channel and adjacent floodplains) with a longitudinal transition in roughness over the floodplains are experimentally investigated in an 18 m long and 3 m wide flume. Transitions from submerged dense vegetation (meadow) to emergent rigid vegetation (wood) and vice versa are modelled using plastic grass and vertical wooden cylinders. For a given roughness transition, the upstream discharge distribution between main channel and floodplain (called subsections) is also varied, keeping the total flow rate constant. The flows with a roughness transition are compared to flows with a uniformly distributed roughness over the whole length of the flume. Besides the influence of the downstream boundary condition, the longitudinal profiles of water depth are controlled by the upstream discharge distribution. The latter also strongly influences the magnitude of the lateral net mass exchanges between subsections, especially upstream from the roughness transition. Irrespective of flow conditions, the inflection point in the mean velocity profile across the mixing layer is always observed at the interface between subsections. The longitudinal velocity at the main channel/floodplain interface, denoted \(U_{int}\), appeared to be a key parameter for characterising the flows. First, the mean velocity profiles across the mixing layer, normalised using \(U_{int}\), are superimposed irrespective of downstream position, flow depth, floodplain roughness type and lateral mass transfers. However, the profiles of turbulence quantities do not coincide, indicating that the flows are not fully self-similar and that the eddy viscosity assumption is not valid in this case. Second, the depth-averaged turbulent intensities and Reynolds stresses, when scaled by the depth-averaged velocity \(U_{d,int}\) exhibit two plateau values, each related to a roughness type, meadow or wood. Lastly, the same results hold when scaling by \(U_{d,int}\) the depth-averaged lateral flux of momentum due to secondary currents. Turbulence production and magnitude of secondary currents are increased by the presence of emergent rigid elements over the floodplains. The autocorrelation functions show that the length of the coherent structures scales with the mixing layer width for all flow cases. It is suggested that coherent structures tend to a state where the magnitude of velocity fluctuations (of both horizontal vortices and secondary currents) and the spatial extension of the structures are in equilibrium.  相似文献   

7.
Engines in boats and ships using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. Their impact on the Australian coastline and marine ecosystems is of great concern. The purpose of this study was to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) within a 0.4 m-wide and 0.15 m-deep flume, operating at 1,500 and 3,000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Results pertaining to radial distribution, self-similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration fitted with empirical correlations. Furthermore, propeller-induced mixing and pollutant source concentration from a two-stroke engine were estimated.  相似文献   

8.
This paper presents a surface particle image velocimetry study to investigate the dynamics of shallow starting-jet dipoles formed by tidal flow through inlets and their interaction with vorticity formed at the inlet channel lateral boundaries. Vortical structure in the flow field is identified using a local swirl strength criterion evaluated from the two-dimensional flow field. The starting jet dipole vortices and vortices formed as the lateral boundary layers are expelled during flow reversal are characterized by their trajectory, size, and circulation. Using these quantities, a model is developed to predict the size and strength of the expelled lateral boundary layer vortices based on the inlet velocity, channel length, and width of the lateral boundary layer. The expelled boundary layer vortices are found to disrupt the formation of the primary tidal jet dipole through two mechanisms. First, because the boundary layer vortices themselves form a dipole with each half of the starting-jet dipole, the starting-jet vortices are pulled apart and advected away from the inlet mouth early in the tidal cycle, resulting in a reduction in the spin-up time and the amount of vorticity input during starting-jet vortex formation. Second, the advection of each dipole away from the inlet disconnects each starting-jet vortex from the starting jet; hence, the vortices are not fed by fluid in the jet or energized by shear in the jet boundary layers. These influences of the lateral boundary layer on the starting-jet vortices’ formation and propagation are found to be a function of the channel length L, maximum velocity U, and tidal period T, resulting in a predictive value to characterize their trajectory, strength, and evolution.  相似文献   

9.
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce a mean secondary flow in the form of counter-rotating streamwise vortices—this arrangement is prevalent, for example, in open-channel flows relevant to hydraulic engineering. These counter-rotating vortices flank regions of predominant excess(deficit) in mean streamwise velocity and downwelling(upwelling) in mean vertical velocity. The secondary flows have been definitively attributed to the lower surface conditions, and are now known to be a manifestation of Prandtl’s secondary flow of the second kind—driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor (Anderson et al. J Fluid Mech 768:316–347, 2015). The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) transport equation for streamwise vorticity, which has revealed the scaling dependence of streamwise circulation intensity upon characteristics of the problem. The scaling arguments are supported by a recent numerical parametric study on the effect of spacing. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term has been used to represent the effects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with a series of large-eddy simulation cases wherein vortex forcing model parameters were altered to capture different values of spanwise spacing, all of which demonstrate that the model can impose the effects of spanwise topographic heterogeneity (absent the need to actually model roughness elements); these results also justify use of the vortex forcing model in the similarity solution.  相似文献   

10.
An integral model for the plane buoyant jet dynamics resulting from the interaction of multiple buoyant jet effluxes spaced along a diffuser line is considered as an extension of the round jet formulation that was proposed in Part I. The receiving fluid is given by an unbounded ambient environment with uniform density or stable density stratification and under stagnant or steady sheared current conditions. Applications for this situation are primarily for submerged multiport diffusers for discharges of liquid effluents into ambient water bodies, but also for multiple cooling tower plumes and building air-conditioning. The CorJet model formulation describes the conservation of mass, momentum, buoyancy and scalar quantities in the turbulent jet flow in the plane jet geometry. It employs an entrainment closure approach that distinguishes between the separate contributions of transverse shear and of internal instability mechanisms, and contains a quadratic law turbulent pressure force mechanism. But the model formulation also includes several significant three-dimensional effects that distinguish actual diffuser installations in the water environment. These relate to local merging processes from the individual multiple jets, to overall finite length effects affecting the plume geometry, and to bottom proximity effects given by a “leakage factor” that measures the combined affect of port height and spacing in allowing the ambient flow to pass through the diffuser line in order to provide sufficient entrainment flow for the mixing downstream from the diffuser. The model is validated in several stages: First, comparison with experimental data for the asymptotic, self-similar stages of plane buoyant jet flows, i.e. the plane pure jet, the pure plume, the pure wake, the advected line puff, and the advected line thermal, support the choice of the turbulent closure coefficients contained in the entrainment formulation. Second, comparison with data for many types of non-equilibrium flows with a plane geometry support the proposed functional form of the entrainment relationship, and also the role of the pressure force in the jet deflection dynamics. Third, the observed behavior of the merging process from different types of multiport diffuser discharges in both stagnant and flowing ambient conditions and with stratification appears well predicted with the CorJet formulation. Fourth, a number of spatial limits of applicability, relating to terminal layer formation in stratification or transition to passive diffusion in a turbulent ambient shear flow, have been proposed. In sum, the CorJet integral model appears to provide a mechanistically sound, accurate and reliable representation of complex buoyant jet mixing processes, provided the condition of an unbounded receiving fluid is satisfied.  相似文献   

11.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

12.
A simulation tool has been developed to model the wind fields, turbulence fields, and the dispersion of Chemical, Biological, Radiological and Nuclear (CBRN) substances in urban areas on the building to city blocks scale. A Computational Fluid Dynamics (CFD) approach has been taken that naturally accounts for critical flow and dispersion processes in urban areas, such as channeling, lofting, vertical mixing and turbulence, by solving the steady-state, Reynolds-Averaged Navier–Stokes (RANS) equations. Rapid generation of high quality cityscape volume meshes is attained by a unique voxel-based model generator that directly interfaces with common Geographic Information Systems (GIS) file formats. The flow and turbulence fields are obtained by solving the steady-state RANS equations using a collocated, pressure-based approach formulated for unstructured and polyhedral mesh elements. Turbulence modeling is based upon the Renormalization Group variant of the k–ε model (k–ε RNG). Neutrally buoyant simulations are made by prescribing velocity boundary condition profiles found by a power–law relationship, while turbulence quantities boundary conditions are defined by a prescribed mixing length in conjunction with the assumption of turbulence equilibrium. Dispersion fields are computed by solving an unsteady transport equation of a dilute gas, formulated in a Eulerian framework, using the velocity and turbulence fields found from the steady-state RANS solution. In this paper the model is explained and detailed comparisons of predicted to experimentally obtained velocity, turbulence and dispersion fields are made to neutrally stable wind tunnel and hydraulic flume experiments.  相似文献   

13.
In nature, density driven currents often flow over or within a bottom roughness: a sea breeze encountering tall buildings, a shallow flow encountering aquatic vegetation, or a dense oceanic current flowing over a rough bottom. Laboratory experiments investigating the mechanisms by which bottom roughness enhances or inhibits entrainment and dilution in a lock-exchange dense gravity current have been conducted. The bottom roughness has been idealized by an array of vertical, rigid cylinders. Both spacing (sparse vs. dense configuration) and height of the roughness elements compared with the height of the current have been varied. Two-dimensional density fields have been obtained. Experimental results suggest that enhancement of the entrainment/dilution of the current can occur due to two different mechanisms. For a sparse configuration, the dense current propagates between the cylinders and the entrainment is enhanced by the vortices generated in the wake of the cylindrical obstacles. For a dense configuration, the dense current rides on top of the cylinders and the dilution is enhanced by the onset of convective instability between the dense current above the cylinders and the ambient lighter water between the cylinders. For low values of the ratio of the cylinder to lock height \(\lambda \) the dense current behavior approaches that of a current over a smooth bottom, while the largest deviations from the smooth bottom case are observed for large values of \(\lambda \).  相似文献   

14.
The stability, mixing and effect of downstream control on axisymmetric turbulent buoyant jets discharging vertically into shallow stagnant water is studied using 3D Reynolds-averaged Navier–Stokes equations (RANS) combined with a buoyancy-extended k –ε model. The steady axisymmetric turbulent flow, temperature (or tracer concentration) and turbulence fields are computed using the finite volume method on a high resolution grid. The numerical predictions demonstrate two generic flow patterns for different turbulent heated jet discharges and environmental parameters (i) a stable buoyant discharge with the mixed fluid leaving the vertical jet region in a surface warm water layer; and (ii) an unstable buoyant discharge with flow recirculation and re-entrainment of heated water. A stratified counterflow region always appears in the far-field for both stable and unstable buoyant discharges. Provided that the domain radius L exceeds about 6H, the near field interaction and hence discharge stability is governed chiefly by the jet momentum length scale to depth ratio lM/H, regardless of downstream control. The near field jet stability criterion is determined to be lM/H = 3.5. A radial internal hydraulic jump always exists beyond the surface impingement region, with a 3- to 6-fold increase in dilution across the jump compared with vertical buoyant jet mixing. The predicted stability category, velocity and temperature/concentration fields are well-supported by experiments of all previous investigators.  相似文献   

15.
The statistics of the fluctuating concentration field within a plume is important in the analysis of atmospheric dispersion of toxic, inflammable and odorous gases. Previous work has tended to focus on concentration fluctuations in single plumes released in the surface layer or at ground level and there is a general lack of information about the mixing of two adjacent plumes and how the statistical properties of the concentration fluctuations are modified in these circumstances. In this work, data from wind tunnel experiments are used to analyse the variance, skewness, kurtosis, intermittency, probability density function and power spectrum of the concentration field during the mixing of two identical plumes and results are compared with those obtained for an equivalent single plume. The normalised variance, skewness and kurtosis on the centre-lines of the combined plume increase with distance downwind of the stack and, in the two-source configuration, takes lower values than those found in the single plumes. The results reflect the merging process at short range, which is least protracted for cases in which the sources are in-line or up to 30 \(^{\circ }\) off-line. At angles of 45 \(^{\circ }\) and more, the plumes are effectively side-by-side during the merging process and the interaction between the vortex pairs in each plume is strong. Vertical asymmetry is observed between the upper and the lower parts of the plumes, with the upper part having greater intermittency (i.e. the probability that no plume material is present) and a more pronounced tail to the concentration probability distribution. This asymmetry tends to diminish at greater distances from the source but occurs in both buoyant and neutral plumes and is believed to be associated with the ‘bending-over’ of the emission in the cross-flow and the vortex pair that this generates. The results allowed us to identify three phases in plume development. The first, very near the stack, is dominated by turbulence generated within the plume and characterised by concentration spectra with distinct peaks corresponding to scales comparable with those of the counter-rotating vortex pair. A second phase follows at somewhat greater distances downwind, in which there are significant contributions to the concentration fluctuations from both the turbulence internal to the plume and the external turbulence. The third phase is one in which the concentration fluctuations appear to be controlled by the external turbulence present in the ambient flow.  相似文献   

16.
Turbulence characteristics within sparse and dense canopies   总被引:2,自引:0,他引:2  
Boundary layer interactions with canopies control various environmental processes. In the case of dense and homogeneous canopies, the so-called mixing layer analogy is most generally used. When the canopy becomes sparser, a transition occurs between the mixing layer and the boundary layer perturbed by interactions between element wakes. This transition has still to be fully understood and characterized. The experimental work presented here deals with the effect of the canopy density on the flow turbulence and involves an artificial canopy placed in a fully developed turbulent boundary layer. One and two-component velocity measurements are performed, both within and above the canopy. The influence of the spacing between canopy elements is studied. Longitudinal velocity statistical moments and Reynolds stresses are calculated and compared to literature data. For spacings greater than the canopy height, evidences of this transition are found in the evolution of the skewness factor, shear length scale and mixing length.  相似文献   

17.
Four variants of the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) have been constructed to sample a broad size spectrum of oceanic animals from microzooplankton to micronekton. The systems differ in mouth opening dimensions (ranging from 1/4 to 20 m2), the number of nets carried (from 5 to 20), and the mesh size of the netting (from 64 m to 3.0 mm). A new electronics package enables an operator to send commands down a single conductor, armored cable to open/close the nets and provides 12-bit resolution for the environmental (temperature, depth, conductivity) and net operation data (flow, net-frame angle, net-bar release), which are transmitted up the cable to the deck unit at 2-s intervals. A microcomputer system, interfaced to the deck unit, calculates salinity, volume filtered by a net, net trajectory velocity, and vertical velocity. The data are printed out and stored on disc, and profiles of temperature and salinity versus depth are plotted during the course of the tow. Analysis of the relationship between the geometry of the MOCNESS under tow and the past and present methods used to estimate the water filtered by a net revealed that significant bias is introduced when the ascent or descent angle of a net is disregarded. The bias is a function of the ratio of vertical velocity to net trajectory velocity and results in an underestimate of volume filtered while shooting a net and an overestimate while hauling.  相似文献   

18.
Predicting flow and mass transport in vegetated regions has a broad range of applications in ecology and engineering practice. This paper presents large eddy simulation (LES) of turbulent flow and scalar transport within a fully developed open-channel with submerged vegetation. To properly represent the scalar transport, an additional diffusivity was introduced within the canopy to account for the contribution of stem wakes, which were not resolved by the LES, to turbulent diffusion. The LES produced good agreement with the velocity and concentration fields measured in a flume experiment. The simulation revealed a secondary flow distributed symmetrically about the channel centerline, which differed significantly from the circulation in a bare channel. The secondary circulation accelerated the vertical spread of the plume both within and above the canopy layer. Quadrant analysis was used to identify the form and shape of canopy-scale turbulent structures within and above the vegetation canopy. Within the canopy, sweep events contributed more to momentum transfer than ejection events, whereas the opposite occurred above the canopy. The coherent structures were similar to those observed in terrestrial canopies, but smaller in scale due to the constraint of the water surface.  相似文献   

19.
Channel confluences at which two channels merge have an important effect on momentum exchange and contaminant diffusion in both natural rivers and artificial canals. In this study, a three-dimensional numerical model, which is based on the Reynolds Averaged Navier–Stokes equations and Reynolds Stress Turbulence model, is applied to simulate and compare flow patterns and contaminant transport processes for different bed morphologies. The results clearly show that the distribution of contaminant concentrations is mainly controlled by the shear layer and two counter-rotating helical cells, which in turn are affected by the discharge ratio and the bed morphology. As the discharge ratio increases, the shear flow moves to the outer bank and the counter-clockwise tributary helical cell caused by flow deflection is enlarged, leading the mixing happens near the outer bank and the mixing layer distorted. The bed morphology can induce shrinkage of the separation zone and increase of the clockwise main channel helical cell, which is initiated by the interaction between the tributary helical cell and the main channel flow and strengthened by the deep scour hole. The bed morphology can also affect the distortion direction of the mixing layer. Both a large discharge ratio and the bed morphology could lead to an increase in mixing intensity.  相似文献   

20.
The sea cucumber, Cucumaria frondosa, is a benthic suspension feeder that captures food particles on its tentacles and then inserts them into its mouth one at a time. Previous studies have suggested that tentacle insertion rate (TIR) could be a useful indicator of food intake. The present study determined whether flow velocity affects TIR and whether TIR is a good indicator of ingestion. Video observations of sea cucumbers in Passamaquoddy Bay (45°01.70N, 66°55.74W) in August 1995 showed that TIRs increased with velocities up to 55 cm s−1 and decreased steadily at flows above that up to 130 cm s−1. In October 2006, laboratory flume studies were carried out on specimens collected from the same site in the previous August. Temperature and salinity (12°C and 32) in the flume were the same as in the field at the time of collection. There was high individual variation in feeding behavior at free-stream velocities of 4–40 cm s−1 and TIR was independent of flow. As the number of tentacle insertions increased in the flume experiments, the amount of chloropigments in the digestive tracts of the sea cucumbers also increased. This suggests that TIR, which can be measured non-intrusively using remote video techniques, could be a good indicator of feeding behavior and ingestion in C. frondosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号