首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   

2.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

3.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO? 3 ?N ha?1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that below-ground respiration per unit biomass and per unit plant N was increased.  相似文献   

4.
With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m?2 h?1) extremely higher than those of N2O (0.028–0.41 mg N m?2 h?1). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O–N capita?1 yr?1. An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO2 eq yr?1, respectively, for a total that could be transformed to 9.09 kg CO2 eq capita?1 yr?1.  相似文献   

5.
Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH4) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH4 oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH4 and CO2 fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (?0.36 to 3044 mg CH4 m?2 h?1); but were at least 15 times lower than typical literature CH4 fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH4 fluxes in laboratory microcosms revealed a very strong correlation between CH4 oxidation efficiency and CH4/CO2 ratios, confirming the utility of this relationship for approximating CH4 oxidation efficiency. CH4/CO2 ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH4 oxidation efficiency of 72%. To examine CH4 oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH4 removal rates of 70–100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH4 oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH4 quantities than the 10% default value currently adopted by the IPCC.  相似文献   

6.
The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week?1 and the temperature inside the composting units was in all cases only a few degrees (2–10 °C) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg?1 input wet waste (ww) and 0.30–0.55 kg N2O Mg?1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100–239 kg CO2-eq. Mg?1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg?1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg?1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.  相似文献   

7.
Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg?1 DM to 274.2, 30.4, and 314.0 mg kg?1 DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg?1 DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.  相似文献   

8.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements.A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m−2 d−1 and 3800 g CH4 m−2 d−1, respectively.The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.  相似文献   

10.
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t?1 rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2-eq t?1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t?1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.  相似文献   

11.
Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20–200 g CO2 eq. m?2 h?1 magnitude (up to 428 mg N m?2 h?1) were observed within 20 m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO2 eq. m?2 h?1. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.  相似文献   

12.
Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO 3 –N ha–1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that belowg-round respiration per unit biomass and per unit plant N was increased.  相似文献   

13.
Simple bioenergetics models were used to derive annual nitrogen excretion rates of each seabird species occurring at colonies in the UK. These were combined with population distribution data and an estimated fraction of nitrogen volatilized to estimate the spatial distribution of NH3 emissions from seabird colonies at a 1 km resolution. The effect of these emissions on atmospheric NH3 concentrations and nitrogen deposition in the UK was assessed using the FRAME atmospheric chemistry and transport model. The total emission of NH3 from the UK seabird colonies is estimated at 2.7 kt yr?1. Emissions from seabirds are largely concentrated in remote parts of Britain, where agricultural and other anthropogenic emissions are minimal. Although seabirds account for less than 1% of total UK NH3 emissions (~370 kt yr?1), their occurrence in remote areas and frequently large colony sizes results in seabirds providing a major fraction of the atmospheric nitrogen deposition for many remote ecosystems.  相似文献   

14.
Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation—cis‐dichloroethene (cis‐DCE) and chloride—using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis‐DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump‐and‐treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009. © 2012 Wiley Periodicals, Inc.*  相似文献   

15.
The influence of the industrial control composting conditions (aeration 0.005–0.300?Lair?kg?1 and moisture 40–70?%) of municipal solid waste on the composition of the selected compound emitted (limonene, β-pinene, 2-butanone, undecane, phenol, toluene, dimethyl sulfide, dimethyl disulfide) was studied. The highest emissions of volatile organic compounds (VOCs) were observed in the early stages of the processes. At the end of the process, low concentrations of the emitted compounds were found. Aeration rate had a strong effect on emissions. High aeration rate (0.300?Lair?kg?1?min?1) caused normally high emissions of all selected compounds whereas low aeration rates (0.05?Lair?kg?1?min?1) could cause anaerobiosis problems and generation of organic sulphur compounds. We observed that the effect of the moisture upon the emitted concentrations varied depending on the studied compound.  相似文献   

16.
First, this paper evaluates the current building material stock and future demolition waste for urban residential buildings in the cities of Jakarta and Bandung using a material-flow analysis. The actual on-site building measurements were conducted in Jakarta (2012) and Bandung (2011), focusing particularly on unplanned houses, to obtain building material inventory data. A total of 297 houses were investigated in Jakarta, whereas 247 houses were measured in Bandung. Second, this paper analyses the embodied energy and CO2 emissions of building materials through an input–output analysis. The results show that, overall, the total material input intensity for the houses is 2.67 ton/m2 in Jakarta and 2.54 ton/m2 in Bandung. Two scenarios with zero and maximum reuse/recycling rates were designed to predict future demolition waste and the embodied energy/CO2 emissions of building materials in Jakarta. Closed- and open-loop material flows were applied. If the maximum reuse/recycling rates are applied to the closed- and open-loop material flows in Jakarta, then it would become possible to not only decrease the final disposal waste (from 123.9 to 2.1 million ton) but also reduce the corresponding embodied energy (from 247.8 to 192.1 PJ) and CO2 emissions (from 24.3 to 19.2 million ton CO2-eq) compared with the zero reuse/recycling scenario from 2012 to 2020.  相似文献   

17.
World primary energy demand increases with increases in population and economic development. Within the last 25 yr, the total energy consumption has almost doubled. For the purpose of meeting this demand, fossil energy sources are used and various pollutants are generated. CO2 is also one of these gases, which cannot be removed like other pollutants, and it causes greenhouse effect and climate change. Reducing the CO2 emission is very important because of the environmental concerns and regulations, especially the Kyoto Protocol. This paper reviews the estimated world carbon emissions, Turkey's situation in electrical energy production, emission amounts estimated until the year 2020 and emission factors for dust, SO2, NOx and CO2. The estimated results show that CO2 emissions from thermal power plants in Turkey will make about 0.66 % of the global CO2 emissions in 2020.  相似文献   

18.
Natural aggregates (NA) are crushed and processed in crushing plants after the extraction stage in quarries. In the present study, the aggregates are divided into three scenarios, depending on the production methods. The first scenario considers the production of NA, the second scenario deals with the production of recycled aggregates (RA) with respect to construction and demolition waste, and the third scenario, which is a hybrid scenario, handles the combination of NA and RA by assuming a 50% mixing percentage. In this research, we assess the environmental impacts on the production of aggregates via each scenario, using life cycle assessment; in addition, energy consumption and CO2 emissions are considered as the environmental variables. We conclude that Iran’s current policy with an annual energy consumption of 1.48 million tons of oil equivalent (toe) can have a footprint of 2.88 million tons of CO2 eq emissions per year (the first scenario). Achieving 30 and 36% reduction in annual energy consumption and CO2 emissions, respectively, by the third scenario compared to the first scenario indicates the destructive effect of the first scenario from the environmental outlook.  相似文献   

19.
Nitrous oxide (N2O) release and denitrification rates were investigated from the intertidal saltmarsh and mudflats of two European river estuaries, the Couesnon in Normandy, France and the Torridge in Devon, UK. Sediment cores and water were collected from each study site and incubated for 72 h in tidal simulation chambers. Gas samples were collected at 6 and 12 h intervals from the chambers during incubation. From these N2O emission rates were calculated. The greatest rates for both N2O production and denitrification were measured from saltmarsh cores. These were 1032 μmol N2O m?2 day?1 and 2518 μmol N2 m?2 day?1, respectively, from the Couesnon and 109 μmol N2O m?2 day?1 and 303 μmol N2 m?2 day?1 from the Torridge. A strong positive correlation was apparent with N2O emission rates and ammonium concentration in the sediment, nitrate concentration in floodwater and sediment aerobicity.  相似文献   

20.
Emissions trading in the European Union (EU), covering the least uncertain emission sources of greenhouse gas emission inventories (CO2 from combustion and selected industrial processes in large installations), began in 2005. During the first commitment period of the Kyoto Protocol (2008–2012), the emissions trading between Parties to the Protocol will cover all greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) and sectors (energy, industry, agriculture, waste, and selected land-use activities) included in the Protocol. In this paper, we estimate the uncertainties in different emissions trading schemes based on uncertainties in corresponding inventories. According to the results, uncertainty in emissions from the EU15 and the EU25 included in the first phase of the EU emissions trading scheme (2005–2007) is ±3% (at 95% confidence interval relative to the mean value). If the trading were extended to CH4 and N2O, in addition to CO2, but no new emissions sectors were included, the tradable amount of emissions would increase by only 2% and the uncertainty in the emissions would range from −4 to +8%. Finally, uncertainty in emissions included in emissions trading under the Kyoto Protocol was estimated to vary from −6 to +21%. Inclusion of removals from forest-related activities under the Kyoto Protocol did not notably affect uncertainty, as the volume of these removals is estimated to be small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号