首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background, aim and scope  

The climatic characteristic is a major parameter affecting on the distribution variation of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). The Tumen River is located in Northeastern of China. The winter era lasts for more than 5 months in a year, and the river water was frozen and covered by ice phase. Coal combustion is an essential heating source in the Tumen River Basin. The objective of this research is to study ice phase effect on the seasonal variation of PAHs in the Tumen River environment.  相似文献   

2.
Hu Z  Shi Y  Cai Y 《Chemosphere》2011,85(2):262-267
Seven typical synthetic musks (SMs) in the samples from the surface water, sediment and fish of the Haihe River were measured. The SM concentrations in the sediment and surface water of the Haihe River were significantly lower than those in the Dagu Drainage River and Chentaizi Drainage River (< 0.05). Along the flow direction, the SM concentrations in surface water and sediment tended to increase from the upstream to the downstream of Dagu Drainage River. The Bioaccumulation factors (BAFs) of galaxolide (HHCB) and tonalide (AHTN) were calculated at high levels in the muscles of crucian carp, common carp, and silver carp. Most of the biota-sediment accumulation factors (BSAFs) for HHCB and AHTN were higher than 1.7, suggesting magnification possibly exist in the musk bioaccumulations of the three fishes in the Haihe River. No significant differences in HHCB/AHTN ratios were observed among the water, fish, and sediment samples (p > 0.05). However, the HHCB/AHTN values in the Haihe River were much lower than those in the Dagu Drainage River and Chentaizi Drainage River (p < 0.05). Compared with several typical persistent organic pollutants (POPs), the musk concentrations were higher or comparable in the Haihe River.  相似文献   

3.
Hu Z  Shi Y  Cai Y 《Chemosphere》2011,84(11):1630-1635
Seven typical synthetic musks (SMs) in the samples from the surface water, sediment and fish of the Haihe River were measured. The SM concentrations in the sediment and surface water of the Haihe River were significantly lower than those in the Dagu Drainage River and Chentaizi Drainage River (< 0.05). Along the flow direction, the SM concentrations in surface water and sediment tended to increase from the upstream to the downstream of Dagu Drainage River. The Bioaccumulation factors (BAFs) of galaxolide (HHCB) and tonalide (AHTN) were calculated at high levels in the muscles of crucian carp, common carp, and silver carp. Most of the biota-sediment accumulation factors (BSAFs) for HHCB and AHTN were higher than 1.7, suggesting magnification possibly exist in the musk bioaccumulations of the three fishes in the Haihe River. No significant differences in HHCB/AHTN ratios were observed among the water, fish, and sediment samples (p > 0.05). However, the HHCB/AHTN values in the Haihe River were much lower than those in the Dagu Drainage River and Chentaizi Drainage River (p < 0.05). Compared with several typical persistent organic pollutants (POPs), the musk concentrations were higher or comparable in the Haihe River.  相似文献   

4.
Gao J  Liu L  Liu X  Zhou H  Huang S  Wang Z 《Chemosphere》2008,71(6):1181-1187
The chlorophenol pollutants (CPs) have been reported to occur at relatively high concentrations in some Chinese waters. To map the distribution of CPs in the surface water throughout China, samples were collected from over 600 sites in the seven major watersheds and three drainage areas. The samples were analyzed for the representative CPs including 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. In general, it was observed that 2,4-dichlorophenol and 2,4,6-trichlorophenol were more frequently detected at higher concentrations in the rivers of North China compared with those of South China. High concentration sites of 2,4-dichlorophenol and 2,4,6-trichlorophenol mainly occurred in the Yellow River, Huaihe River, and Haihe River watersheds, while pentachlorophenol contamination mainly occurred in the Yangtze River watershed. The pentachlorophenol was the most ubiquitous CPs being detected in 85.4% of samples (median=50.0ngl(-1); range <1.1-594.0ngl(-1)), 2,4-dichlorophenol was detected in 51.3% (median=5.0ngl(-1); range <1.1-19960.0ngl(-1)) and the 2,4,6-trichlorophenol was detected in 54.4% of water samples (median=2.0ngl(-1), range <1.4-28650.0ngl(-1)). The results of this investigation indicated that 2,4-dichlorophenol and 2,4,6-trichlorophenol contaminations of Yellow River, Huaihe River, and Haihe River watersheds were of particular concern, while the pentachlorophenol contamination mainly occurred in the Yangtze River watershed. These results showed that CPs contamination in the surface water of China was similar to other places of the world.  相似文献   

5.

Introduction  

Mediterranean rivers are characterized by a high flow variability, which is strongly influenced by the seasonal rainfall. When water scarcity periods occur, water flow, and dilution capacity of the river is reduced, increasing the potential environmental risk of pollutants. On the other hand, floods contribute to remobilization of pollutants from sediments. Contamination levels in Mediterranean rivers are frequently higher than in other European river basins, including pollution by pharmaceutical residues. Little attention has been paid to the transport behavior of emerging contaminants in surface waters once they are discharged from WWTP into a river. In this context, this work aimed to relate presence and fate of emerging contaminants with hydrological conditions of a typical Mediterranean River (Llobregat, NE Spain).  相似文献   

6.
Liu H  Zhang Q  Wang Y  Cai Z  Jiang G 《Chemosphere》2007,68(9):1772-1778
The pollution status of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the sediments of Haihe River, which is the most polluted among the seven largest basins in China, Dagu Drainage River flowing through a chemical industry zone, and two other rivers flowing into Bohai Sea in Tianjin City, China were investigated. The concentrations of PCDD/Fs and PCBs in the sediments from the mainstream of Haihe River were 1.3-26pgI-TEQg(-1) dry weight (dw) and 0.07-0.54pgTEQg(-1)dw, respectively. Heavy PCDD/Fs and PCBs pollution, with 1264pgI-TEQg(-1)dw and 21pgTEQg(-1)dw, was found in sediment from Dagu Drainage River. The congener profiles of PCDD/Fs indicated that the principal contamination source was the production of pentachlorophenol (PCP) or PCP-Na in this area. The correlation between PCDD/Fs or PCBs and total organic matter (TOM) showed that PCDD/Fs or PCBs were independent on TOM.  相似文献   

7.
The bioavailability and ecological risk of hydrophobic organic compounds (HOCs) in aquatic environments largely depends on their freely dissolved concentrations. In this work, the freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, pyrene, and chrysene were determined for the Yellow River, Haihe River and Yongding River of China using polyethylene devices (PEDs). The results indicated that the order of ratios of freely to total dissolved concentrations of the three PAHs was phenanthrene (66.8 ± 20.1%) > pyrene (48.8 ± 26.4%) > chrysene (5.5 ± 3.3%) for the three rivers. The ratios were significantly negatively correlated with the log Kow values of the PAHs. In addition, the ratios were negatively correlated with the suspended sediment (SPS) and dissolved organic carbon (DOC) concentrations in the river water, and the characteristics of the SPS and DOC were also important factors. Simulation experiments showed that the ratio of freely to total dissolved concentrations of pyrene in the aqueous phase decreased with increasing SPS concentration; when the sediment concentration increased from 2 g L?1 to 10 g L?1, the ratio decreased from 67.6% to 38.4% for Yellow River sediment and decreased from 50.4% to 33.6% for Haihe River sediment. This was because with increasing SPS concentration, more and more DOC, small particles and colloids (<0.45 μm) would enter the aqueous phase. Because high SPS and DOC concentrations exist in many rivers, their effect on the freely dissolved concentrations of HOCs should be considered when conducting an ecological risk assessment.  相似文献   

8.
Twenty-seven surface sediment samples were collected from the mainstream and eight tributaries of the Wuhan reach of the Yangtze River, China, in 2005, in order to assess the distribution, possible sources, and potential risk of polychlorinated biphenyls (PCBs) in the environment. The total concentrations of PCBs (the sum of 39 congeners) ranged from 1.2 to 45.1 ng g−1 dry weight, with a mean value of 9.2 ng g−1. Sediment samples with the highest PCB concentrations came from the tributary sites, which are closer to PCB sources. Conversely, PCB concentrations in the sediment from the mainstream sites of Yangtze River were relatively low. The observed PCB levels were higher than those found in the sediments of other rivers in China, but lower than those in river sediments from other urban areas and harbors around the world. Low-chlorinated PCBs, dominated by tetra-PCBs and penta-PCBs, were identified as being prevalent in the surface sediments. Correlation analyses between the PCBs and the geochemistry and heavy metal content of the sediments suggest that the washing of these compounds from the land into the river by floods and heavy rains, or industrial wastewater and domestic sewage, may be the major sources of the PCBs. According to established sediment quality guidelines, the risk of adverse biological effects from the levels of PCBs recorded at most of the studied sites should be insignificant, although the higher concentrations at other sites could cause acute biological damage.  相似文献   

9.

Introduction  

To assess the status of polycyclic aromatic hydrocarbons (PAHs) contamination in sediments from the upper reach of Huaihe River, East China, 16 surface sediment samples were collected in March 2007 and analyzed for 16 USEPA priority PAHs.  相似文献   

10.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

11.
Enantiomeric compositions and fractions (EFs) of three chiral imidazole (econazole, ketoconazole, and miconazole) and one chiral triazole (tebuconazole) antifungals were investigated in wastewater, river water, and bed sediment of the Pearl River Delta, South China. The imidazole pharmaceuticals in the untreated wastewater were racemic to weakly nonracemic (EFs of 0.450–0.530) and showed weak enantioselectivity during treatment in the sewage treatment plant. The EFs of the dissolved azole antifungals were usually different from those of the sorbed azoles in the suspended particulate matter, suggesting different behaviors for the enantiomers of the chiral azole antifungals in the dissolved and particulate phases of the wastewater. The azole antifungals were widely present in the rivers. The bed sediment was a sink for the imidazole antifungals. The imidazoles were prevalently racemic, whereas tebuconazole was widely nonracemic in the rivers. Seasonal effects were observed on distribution and chirality of the azole antifungals. Concentrations of the azole antifungals in the river water were relatively higher in winter than in spring and summer while the EF of miconazole in the river water was higher in summer. The mechanism of enantiomeric behavior of the chiral azole antifungals in the environment warrants further research.  相似文献   

12.
Ye B  Zhang Z  Mao T 《Chemosphere》2007,68(1):140-149
Surficial sediment samples were collected from three rivers and six canals in Tianjin, China and analyzed for petroleum hydrocarbons. Chemical compositions and distribution patterns, as well as possible sources, of the petroleum hydrocarbons in the sediments were discussed. A series of petroleum hydrocarbons, including n-alkanes, isoprenoid alkanes, anteiso-alkanes, alkyl hexamethylene, hopanes and steranes were detected in the samples. The concentration of petroleum hydrocarbons varied in a wide range of 0.072-3.000 mg g(-1) in the surficial sediment of the rivers and canals in Tianjin. In the samples studied, the total concentrations of petroleum hydrocarbons in the sediment samples from North Canal, South Canal, and G3 segment of South Sewage Canal were higher than those from Hai River, South Sewage Canal and North Sewage Canal. Accumulation of pollutants in the sediments from reaches close to urban area was also observed. The PHC spatial variability is mostly affected by many local inputs. The main sources of petroleum hydrocarbons in the sediment in Tianjin were considered to be petroleum importation and biochemical degradation of organisms, including cuticular of aquatic vegetation and algae.  相似文献   

13.
In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded “AquaTerra” project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management.  相似文献   

14.

Introduction  

Chlorobenzenes are used as solvents or as feedstocks in the production of pesticide formulations, dyes, room deodorizers, moth-proofing agents, and de-inking solvents. Chlorobenzenes were produced by the Dow Chemical Company in Midland, Michigan, for several decades. In this study, concentrations of 12 chlorobenzene (CBz) congeners, from mono- to hexachlorobenzenes, were measured in more than 150 floodplain soil (FPS), surface sediment, and sediment core (SC) samples collected during 2002–2004 from the Pine River, Tittabawassee River, Shiawassee River, Saginaw River, and Saginaw Bay, Michigan.  相似文献   

15.

Background, aim and scope  

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.  相似文献   

16.
Untreated industrial and domestic wastewater from Hanoi city is discharged into rivers that supply water for various agricultural and aqua-cultural food production systems. The aim of this study was to assess the content, distribution and fate of 33 elements in the sediment and pore water of the main wastewater receiving rivers. The sediment was polluted with potentially toxic elements (PTEs) with maximum concentrations of 73 As, 427 Cd, 281 Cr, 240 Cu, 218 Ni, 363 Pb, 12.5 Sb and 1240 Zn mg kg(-1) d.w. Observed distribution coefficients (log(10) K(d,obs)) were calculated as the ratio between sediment (mg kg(-1) d.w.) and pore water (mg L(-1)) concentrations. Maxima log(10) K(d,obs) were >4.26 Cd, >6.60 Cu, 4.78 Ni, 7.01 Pb and 6.62 Zn. The high values show a strong PTE retention and indicate the importance of both sorption and precipitation as retention mechanisms. Sulphide precipitation was a likely mechanism due to highly reduced conditions.  相似文献   

17.
The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.  相似文献   

18.
The objectives of this study are to track the occurrence, distribution, and sources of phenolic endocrine disrupting compounds (EDCs) in the 22 rivers around Dianchi Lake in China, to estimate the input and output amounts of phenolic EDCs in the water system, and to provide more comprehensive fundamental data for risk assessment and contamination control of phenolic EDCs in aquatic environment. Six phenolic EDCs were systematically evaluated in water and surface sediment in the estuaries of those rivers. The water and sediment samples were preconcentrated by solid-phase extraction system and microwave-assisted extraction system, respectively. Phenolic EDCs were analyzed by GC-MS (Thermo Fisher Scientific, USA) after derivatization. Phenolic EDCs were found ubiquitously in the aquatic environment. The total concentrations ranged from 248 to 4,650 ng/L in water, and 113 to 3,576 ng/g dry weight in surface sediment. The residue amount of phenolic EDCs in Dianchi Lake was 258 kg/a. Concentrations of the phenolic EDCs in the Lake decreased with increase in distance to the estuaries of those rivers which run through urban and industrial areas. The rivers seriously contaminated by phenolic EDCs were Xin River, Yunliang River, Chuanfang River, Cailian River, Jinjia River, Zhengda River, and Daqing River which run through the old area of Kunming City. Satisfying correlations were observed between the concentrations of the target compounds in water and in surface sediment. NP1EO, NP2EO, and BPA were identified as the three predominant phenolic EDCs. There were significant correlations between phenolic EDCs and many basic water quality parameters. Urban and industrial areas are the major contributors for phenolic EDCs, especially in Kunming City. Compositional profiles of phenolic EDCs in surface sediment were similar to those in river water. The concentrations of phenolic EDCs in the rivers located in the northwest part of the valley were very high, and posed a potential risk to aquatic organisms and even human. The concentrations of NP2EO, NP1EO, and BPA were at moderate levels of other areas. The basic water quality parameters (TOC, TN, DO, and pH) play important roles on the distribution, fate, and behavior of phenolic EDCs in the valley.  相似文献   

19.
The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers.  相似文献   

20.

Background, aim, and scope

Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated.

Approach

We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries.
  • Have climate change and land-use change increased erosion and sediment loads in rivers?
  • Do we have indications of an increase in riverbed clogging?
  • Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging?
  • Results

    Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish.

    Discussion

    Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades.

    Conclusions

    Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor.

    Recommendations and perspectives

    Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号