首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Nickel hyperaccumulator plants contain unusually elevated levels of Ni (>1,000 mg Ni kg−1). The high Ni concentration of hyperaccumulator tissues may affect ecosystem processes such as decomposition, but this has yet to be studied under field conditions. We used Senecio coronatus Thunb. (Harv.) from two pairs of serpentine sites: one member of each pair contained a hyperaccumulator population and the other a non-hyperaccumulator population. Our main goal was to determine if leaf Ni status (hyperaccumulator or non-hyperaccumulator) affected leaf decomposition rate on serpentine sites. We also used a non-serpentine site on which leaves from all four S. coronatus populations were placed to compare decomposition at a single location. Dried leaf fragments were put into fine-mesh (0.1 mm) nylon decomposition bags and placed on field sites in mid-summer (early February) 2000. Sets of bags were recovered after 1, 3.5, and 8 months, their contents dried and weighed, and the Ni concentration and total Ni content of high-Ni leaves was measured. For the serpentine sites, there was no significant effect of leaf Ni status or site type on decomposition rates at 1 and 3.5 months. By 8 months, leaf Ni status and site type significantly influenced decomposition on one pair of sites: hyperaccumulator leaves decomposed more slowly than non-hyperaccumulator leaves, and leaves of both types decomposed more slowly on the non-hyperaccumulator site. At the non-serpentine site, the highest-Ni leaves (15,000 mg Ni kg−1) decomposed more slowly than all others, but leaves containing 9,200 mg Ni kg−1 did not decompose more slowly than non-hyperaccumulator leaves. Nickel in decomposing hyperaccumulator leaves was released rapidly: after 1 month 57–68% of biomass was lost and only 9–28% of original Ni content remained. We conclude that very high (>10,000 mg Ni kg−1) leaf Ni concentrations may slow decomposition and that Ni is released at high rates that may impact co-occurring litter- and soil-dwelling organisms.  相似文献   

2.
Nickel hyperaccumulator plants have been the focus of considerable research because of their unique ecophysiological characteristics that can be exploited in phytomining technology. Comparatively little research has focussed on the soil chemistry of tropical nickel hyperaccumulator plants to date. This study aimed to elucidate whether the soil chemistry associated with nickel hyperaccumulator plants has distinctive characteristics that could be indicative of specific edaphic requirements. The soil chemistry associated with 18 different nickel hyperaccumulator plant species occurring in Sabah (Malaysia) was compared with local ultramafic soils where nickel hyperaccumulator plants were absent. The results showed that nickel hyperaccumulators in the study area were restricted to circum-neutral soils with relatively high phytoavailable calcium, magnesium and nickel concentrations. There appeared to be a ‘threshold response’ for the presence of nickel hyperaccumulator plants at >20 μg g?1 carboxylic-extractable nickel or >630 μg g?1 total nickel, and >pH 6.3 thereby delimiting their edaphic range. Two (not mutually exclusive) hypotheses were proposed to explain nickel hyperaccumulation on these soils: (1) hyperaccumulators excrete large amounts of root exudates thereby increasing nickel phytoavailability through intense rhizosphere mineral weathering; and (2) hyperaccumulators have extremely high nickel uptake efficiency thereby severely depleting nickel and stimulating re-supply of Ni from diffusion from labile Ni pools. It was concluded that since there was an association with soils with highly labile nickel pools, the available evidence primarily supports hypothesis (2).  相似文献   

3.
This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead–zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002–2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 μg L−1, copper (Cu) 616 μg L−1, cadmium (Cd) 223 μg L−1 and lead (Pb) 10,590 μg L−1, which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6–174 μg L−1), Cd (1–46 μg L−1) and Pb (2–26 μg L−1). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO4), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO4 increased while those of bicarbonate (HCO3) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758–10,550 μg L−1) near the mine, which far exceeded the Korean standard of 1000 μg L−1 for drinking water. The decreases in the heavy metals contents in the groundwaters associated with reduced rainfall were quite different from the increases observed for the stream waters, which is not clearly understood at this time and warrants further investigation.  相似文献   

4.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

5.
Summary. Nickel hyperaccumulation, resulting in plant Ni contents of >1000 mg kgу dry mass, has been shown to defend plants against folivorous herbivores. We determined whether this elemental defence tactic protected hyperaccumulating plants from attack by a phloem-feeding herbivore. We used the pea aphid, Acyrthosiphon pisum, and the Ni-hyperaccumulating plant Streptanthus polygaloides. Aphids were allowed to colonize mixed arrays of S. polygaloides in which plants either were hyperaccumulating Ni, not hyperaccumulating Ni and treated with a systemic insecticide, or not hyperaccumulating Ni. Aphid numbers gу dry mass of plant biomass were lowest for the insecticide treatment, intermediate for low-Ni plants, and highest for plants hyperaccumulating Ni. Artificial liquid aphid diet, amended with varying levels of Ni, resulted in decreased aphid survival at 2500 mg kgу Ni dry mass (or 5.03 mM Ni). We concluded that Ni levels in the phloem of hyperaccumulating plants of S. polygaloides were < 5.03 mM and, as a result, were not effective in defending plants against aphid attack.  相似文献   

6.
This study presents the concentrations of about 50 metals and ions in 33 different brands of bottled waters on the Swedish market. Ten of the brands showed calcium (Ca) concentrations ≤10 mg L−1 and magnesium (Mg) levels <3 mg L−1, implying very soft waters. Three of these waters had in addition low concentrations of sodium (Na; <7 mg L−1), potassium (K; <3 mg L−1) and bicarbonate (HCO3 ≤31 mg L−1). These brands were collected from barren districts. Nine of the brands were collected from limestone regions. They showed increased Ca-levels exceeding 50 mg L−1 with a maximum of 289 mg L−1. Corresponding Mg-levels were also raised in two brands exceeding 90 mg L−1. Two soft and carbonated waters were supplemented with Na2CO3 and NaCl, resulting in high concentrations of Na (644 and 648 mg L−1) and chloride (Cl; 204 and 219 mg L−1). Such waters may make a substantial contribution to the daily intake of NaCl in high water consumers. The storage of carbonated drinking water in aluminum (Al) cans increased the Al-concentration to about 70 μg L−1. Conclusion As there was a large variation in the material as regards concentrations of macro-elements such as Ca, Mg, Na, K and Cl. Supplementation with salts, e.g., Na2CO3, K2 CO3 and NaCl, can lead to increased concentrations of Na, K and Cl, as well as decreased ratios of Ca/Na and larger ratios of Na/K. Water with high concentrations of e.g., Ca and Mg, may make a substantial contribution to the daily intake of these elements in high water consumers. Al cans are less suited for storage of carbonated waters, as the lowered pH-values may dissolve Al. The levels of potentially toxic metals in the studied brands were generally low.  相似文献   

7.
The use of tree species for phytoremediation of contaminated soil offers the advantage of a large biomass in which to store contaminants. We investigated the cadmium (Cd) and zinc (Zn) accumulation ability of Evodiopanax innovans, a common deciduous tree species belonging to the Araliaceae family and widely found in secondary forests in Japan. Sampling was conducted at an old silver mine. Leaf samples were collected from nine tree species, including E. innovans. The seasonal variation of metal concentrations in the leaves and the detailed distribution of metals in the leaves and twigs of E. innovans were measured. We also analyzed the contents of organic acids in the leaves. The highest concentration of Cd in the leaves of E. innovans was 118 μg/g, which exceeds the threshold level for being considered a Cd hyperaccumulator (100 μg/g). For Zn, the highest value was 1040 μg/g in leaves, which is less than required to qualify as a Zn hyperaccumulator. Both Cd and Zn were found to accumulate in the petioles and veins of leaves and the bark of twigs. Since the oxalic acid content of leaves showed a weak correlation with Cd concentration, oxalic acid may play an important role in the accumulation of Cd. Taking both the Cd concentration level and the biomass of this woody plant into consideration, it may be possible to use E. innovans for the phytoremediation of Cd-contaminated soils.  相似文献   

8.
Soil, water and vegetation samples were collected from the Triada area of Central Euboea and analysed for heavy metals in order to evaluate their environmental impact. The geology of the area studied includes ultrabasic rocks that are overlaid by Upper Cretaceous limestones whereas Fe–Ni mineralisation is intercalated between either the ultrabasic parent rocks or the karstified Jurassic/Triassic carbonates and the transgessive Upper Cretaceous limestones. All the samples were analysed for heavy metals by using atomic absorption spectroscopy. The heavy metal ranges (in g g–1) for soils samples are: Ni 480–4000, Cr 240–2720, Co 40–208, Fe 24,000–380,000, Mn 46–1680, Pb 16–56, Zn 40–144, Cu 2–82. The values of soil samples of the Triada area are much higher than the values found for Ni, Cr, Co and Fe, in normal soils of the world. The heavy metal ranges (in g L–1) for water samples are: Ni 19–24, Cr 19–476, Co <5, Fe <100, Mn <100, Mg 5.7–220.5, As 30–69, Cd <2, Pd <10, Zn 5–11, Cu 2–7. The water samples of the Triada area have Cr and Mg concentrations higher than the permittable values. The heavy metal ranges (in g g–1) for vegetation samples are: Ni 1–135, Cr 0–24, Co 1–21.5, Fe 20–680, Mn 10–206, Cd 0–10, Pb 0–14, Zn 14–70, Cu 0–10.5. The vegetation samples of the Triada area have so high values of Ni, Cr and Co that are considered toxic. The intercorrelated elements Fe, Ni, Cr, Co of the Triada soils, waters and vegetation reflect their association with the ultrabasic rocks and with the Fe–Ni mineralisation.  相似文献   

9.

The present investigation is the first in situ comparative study for the identification of Ni and Cu accumulation strategies involved in Odontarrhena obovata (syn. Alyssum obovatum (C.A. Mey.) Turcz.) growing in Cu-rich smelter-influenced (CSI) and non-Cu-influenced (NCI) sites. The total and Na2EDTA (disodium ethylenediaminetetraacetic acid)-extractable metal concentration in soils and plant tissues (roots, stem, leaves and flowers) were determined for CSI and NCI sites. High concentrations of total Ni, Cr, Co and Mg in the soil suggest serpentine nature of both the sites. In spite of high total and extractable Cu concentrations in CSI soil, majority of its accumulation was restricted to O. obovata roots showing its excluder response. Since the translocation and bioconcentration factors of Ni?>?1 and the foliar Ni concentration?>?1000 μg g?1, it can be assumed that O. obovata has Ni hyperaccumulation potential for both the sites. No significant differences in chlorophyll content in O. obovata leaves were observed between studied sites, suggesting higher tolerance of this species under prolonged heavy metal stress. Furthermore, this species from CSI site demonstrated rather high viability under extreme technogenic conditions due to active formation of antioxidants such as ascorbate, free proline and protein thiols. The presence of Cu in higher concentration in serpentine soil does not exert detrimental effect on O. obovata and its Ni hyperaccumulation ability. Thus, O. obovata could act as a putative plant species for the remediation of Cu-rich/influenced serpentine soils without compromising its Ni content and vitality.

  相似文献   

10.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

11.
Lead in New Orleans soils: New images of an urban environment   总被引:7,自引:0,他引:7  
This paper describes a survey of lead in soil and computer generated maps that have been derived for New Orleans, Louisiana. The soil survey included streetside, houseside and open space samples. Because the survey covered every census tract in the metropolitan area it was possible to construct a computer-generated map of the distribution of lead dust in the soils of the urban environment. The data base consists of coordinates, site characteristics and lead analytical results of 3,704 soil samples. The resulting graphics show peaks of lead ranging from 600–1,200 g per g in the streetside soil of the inner-city and a steeply declining slope to the suburban areas of the city where the lead content of streetside soils is less than 75 g/g. In the inner-city, the amount of lead in soils found near building foundations is 10 to 20 times higher than the soils adjacent to streets where the median lead content of soils is over 300 g g–1. In areas surrounding the city core (mid-city), the amount of lead next to the foundation and adjacent to the street are equivalent with medians of 110 g g–1. In suburban locations, the median lead content of soil along streetsides is 86 g g–1. Soils adjacent to surburban foundations has a median Pb content of 50 g g–1. The lowest median lead content in soil is found in open spaces, ranging from 212 to 40 to 28 g g–1, respectively, for the inner-city, mid-city, and suburbs. These observations are consistent with the production and consumer use of lead-based paint and leaded-fuels within the modern city.  相似文献   

12.
Causes of Keshan–Beck disease (KBD) are still being probed and monitored in China. Relationships between trace elements from eco-environmental systems and KBD are poorly understood although relationships between environmental Se and human health have received extensive attention. In order to investigate relationships between eco-environmental geochemistry and KBD, we selected the Chousang KBD area in Yao County, Shaanxi Province, China, as an example of a prevailing KBD area applying I–Se-rich salts instead of utilizing Se-rich fertilisers on food crops to prevent local residents from developing KBD before 1995. Environmentally geochemical samples (rocks, soils, plants and children's hair) were collected from the Chousang KBD area. Soils in the study area contain 0.11±0.02 µg Se g–1, 0.75±0.11 µg Mo g–1, and 34.5±1.5 µg B g–1 on average, indicating that the study area is a deficient-Se–Mo–B area. Se (0.07±0.007 µg g–1), Mo (0.35±0.09 µg g–1) and B (3±0 µg g–1) contents are low in wheat and corn used as a daily main food staple of local inhabitants. It is indicated that the study area is deficient in environmental Se–Mo–B for the local residents. Se contents of children's hair from the Yangyuan Elementary School in the study area range from 0.09 to 0.26 µg Se g–1 with an average of 0.165±0.05 µg Se g–1 (n=10) in this KBD endemic area. Due to the low levels of Se, Mo and B available in soils and rocks, crops including wheat and corn are deficient in these elements, accordingly, the deficiency of Se, Mo and B in this area may be linked to the daily consumption of wheat and corn deficient in Se, Mo and B. Therefore, local inhabitants should be encouraged to fertilise mixtures of Se, Mo and B on crop plants in order to avoid development of KBD and guarantee a good harvest of crops.  相似文献   

13.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

14.
The nature of protein catabolism in a wide range of species of midwater zooplankton was investigated. The weight-specific ammonia excretion rates (g NH3–N g–1 dry wt h–1, y) decline exponentially with minimum depth of occurreece (MDO, x), y=163.4 x–0.479±0.212 (95%ci) (CI=confidence interval), when temperature is held constant. The change in ammonia excretion can be partially explained by the decrease in percent protein (%P) with MDO, %P=80.17 MDO–0.148±0.122 (95%ci) The atomic O:N ratio of freshly caught zooplankters ranged from 9.1 to 91, with most measurements between 9 and 25. Detailed studies were carried out on the response of one of the species studied (Gnathophausia ingens) to starvation (28 d). After 14 d of starvation the average ammonia excretion rate declined by more than 75% to less than 1 g NH3–N g–1 wet wt h–1, although the average oxygen consumption declined by only 13% within the first 7 d of starvation and then remained stable. This differential response of oxygen consumption and ammonia excretion to starvation resulted in an increase in the average O:N ratio of starved animals from an initial 33 to 165 after 21 d. The average O:N ratios of fed mysids remained below 38 during the experiment. G. ingens maintains a relatively uniform metabolic rate during starvation by relying more heavily on its large lipid stores than when being fed.  相似文献   

15.
The central California coast is a highly productive, biodiverse region that is frequently affected by the toxin-producing dinoflagellate Alexandrium catenella. Despite the consistent presence of A. catenella along our coast, very little is known about the movement of its toxins through local marine food webs. In the present study, we investigated 13 species of commercial finfish and rock crabs harvested in Monterey Bay, California for the presence of paralytic shellfish toxins (PSTs) and compared them to the presence of A. catenella and PSTs in sentinel shellfish over a 3-year period. Between 2003 and 2005, A. catenella was noted in 55% of surface water samples (n = 307) and reached a maximum concentration of 17,387 cells L−1 at our nearshore site in Monterey Bay. Peak cell densities occurred in the month of July and were associated with elevated shellfish toxicity in the summers of 2004 and 2005. When A. catenella was present, particulate PSTs were detected 71% of the time and reached a maximum concentration of 962 ng STXeq L−1. Of the 13 species tested, we frequently detected PSTs in Pacific sardines (Sardinops sagax; maximum 250 μg STXeq 100 g−1), northern anchovies (Engraulis mordax; maximum 23.2 μg STXeq 100 g−1), brown rock crabs (Cancer antennarius; maximum 49.3 μg STXeq 100 g−1) and red rock crabs (C. productus; 23.8 μg STXeq 100 g−1). PSTs were also present in one sample of Pacific herring (Clupea pallas; 13.3 μg STXeq 100 g−1) and one sample of English sole (Pleuronectes vetulus; 4.5 μg STXeq 100 g−1), and not detected in seven other species of flatfish tested. The presence of PSTs in several of these organisms reveals that toxins produced by A. catenella are more prevalent in California food webs than previously thought and also indicates potential routes of toxin transfer to higher trophic levels. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The energetic cost of metamorphosis in cyprids of the barnacle Balanus amphitrite Darwin was estimated by quantification of lipid, carbohydrate and protein contents. About 38–58% (4–5 mJ individual–1) of cypris energy reserves were used during metamorphosis. Lipids accounted for 55–65%, proteins for 34–44% and carbohydrates for <2% of the energy used. Juveniles obtained from larvae fed 106 cells ml–1 of Chaetoceros gracilis were bigger (carapace length: 560–616 µm) and contained more energy (5.56±0.10 mJ juvenile–1) than their counterparts (carapace length: 420–462 µm; energy content: 2.49±0.20 mJ juvenile–1) obtained from larvae fed 104 cells ml–1. At water temperatures of 30°C and 24°C and food concentrations of 104 and 102 cells ml–1 (3:1 mixture of C. gracilis and Isochrysis galbana) as well as under field conditions (26.9±3.1°C and 2.2±0.8 µg chlorophyll a l–1), juveniles obtained from larvae fed the high food concentration grew faster than juveniles obtained from larvae fed low food concentration until 5 days post-metamorphosis. Laboratory experiments revealed a combined effect of early juvenile energy content, temperature and food concentration on growth until 5 days post-metamorphosis. After 10 days post-metamorphosis, the influence of the early juvenile energy content on growth became negligible. Overall, our results indicate that the energy content at metamorphosis is of critical importance for initial growth of juvenile barnacles and emphasize the dependency of the physiological performance of early juvenile barnacles on the larval exposure to food.Communicated by O. Kinne, Oldendorf/LuheAn erratum to this article can be found at  相似文献   

17.
The influence of naturally occurring uraniferous black shales on cadmium, molybdenum and selenium concentrations in soils and plants is examined. The possible implications of element concentrations to animal and human health are considered for the Deog-Pyoung area. Geochemical surveys have been undertaken within 13 river tributary valleys in the area underlain by uraniferous black shales and black slates or grey chlorite schists. Sampling of rocks, soils and plants has been carried out along transect lines within each valley. Samples were analysed for trace elements by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and for uranium by Neutron Activation Analysis (NAA). Soil pH, cation exchange capacity, loss on ignition and particle size distribution have been measured for selected samples. Average trace element concentrations of the Okchon uraniferous black shales were 6.3 μg g−1 Cd, 136 μg g−1 Mo and 8.6 μg g−1 Se. Soils derived from these rocks tend to reflect their extreme geochemical composition. Trace element concentrations in alluvial soils derived in part from these black shales averaged 1.2 μg g−1 Cd, 20 μg g−1 Mo and 1.5 μg g−1 Se. Trace element concentrations in plants were found to be influenced by those of soils. Cadmium accumulated in tobacco leaves up to 46 μg g−1 (D.M.) and leafy plants such as lettuce contain up to 0.5 μg g−1 Se (D.M.). In addition to total concentrations in soils, soil pH is a major factor influencing uptake of Mo into crop plants and soil texture for Se. Concentrations of trace elements in plants also varied between plant species. The relative concentrations of Cd were found to vary in the order tobacco > lettuce > red pepper > rice grain. Elevated concentrations of Cd in crop plants and in tobacco may possibly have deleterious effects on human health in this area. The low Cu:Mo ratio in rice stalk of 2.65:1 may be associated with disturbed Cu metabolism in ruminant animals which regularly consume this material.  相似文献   

18.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

19.
Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d–1 and half-saturation food concentrations of 1.0µg chlorophylla l–1, 50µg C l–1, or 1 500 cells ml–1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg–1 C d–1, or 6 pg C dinoflagellate–1 h–1) and maximum clearance (0.8 to 1.2 × 105 body volumes h–1, or 80 to 120 nl ind.–1 h–1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.  相似文献   

20.
Potential nitrification rates (PNR) directly associated with isolated marine macrobenthic invertebrates were measured for a range of benthic epifaunal and infaunal species (bivalves, gastropods, polychaetes and crustaceans) collected from the Sacca di Goro, Po River delta, Italy. In the case of the filter-feeding bivalves, Tapes philippinarum and Mytilus galloprovicialis the PNR associated with the shell surfaces and dissected animal tissues (gills, siphons and residual tissue) were determined separately, in order to assess the distribution of the nitrifier populations. Significant PNR was found associated with all the tested macrofaunal species with activities ranging between 12 and 2,250 nmol ind.–1 day–1 and specific activities between 150 and 18,400 nmol g–1 dry weight day–1. However, no simple relationships were observed between PNR and the animals taxonomic or functional group, or with animal comportment (infaunal or epifaunal) or size class, indicating that more complex interactions may regulate the degree of colonisation of the animals by nitrifier populations. Incubations of shells alone and dissected tissues of the bivalves T. philippinarum and M. galloprovicialis demonstrated that approximately 50% of the total PNR activity was associated with the shell surfaces and 50% with the internal animal tissues, with the highest specific activities of 950 and 1,970 nmol g–1 dry weight day–1 determined for the gills of T. philippinarum and M. galloprovicialis, respectively. Thus, specific relationships may exist between the nitrifiers and their animal hosts. Overall, our data indicate that the macrofaunal stimulation of nitrification and/or coupled nitrification–denitrification observed in previous studies may not be solely due to the animals burrow walls serving as sites for nitrification, but also to the fact that the internal and external surfaces of the animals themselves are also colonised by nitrifying bacteria. Tentative calculations based on reported animal densities in the Sacca di Goro and the determined PNRs indicate that animal-associated nitrifier populations could contribute significantly to overall nitrification rates in situ, although further experiments are required to determine to what extent the potential rates measured in this study are realised under in situ conditions.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号