首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Heavy metals are one of the hazardous contaminants in the total environment. The present study shows that the Sundarbans soil is contaminated with sludge and moderately contaminated with Cd and Co according to Contamination factor (CF), Enrichment factor (EF), Index of geo-accumulation (Igeo), and Ecological risk factor (ERF). The correlation, principle component analysis and factor analysis showed that Mn and Fe might have lithogenic origin whereas Cu, Pb, Co and Cd have anthropogenic inputs. The screening quick reference table (SQuiRT) shows that Cu and Cd may exert a possible toxic effect on the sediment dwelling biota. The phytoremediation study revealed that the endangered Heritiera fomes leaves can accumulate 80% of cadmium from the soil, which is highest based on this study as compared to other mangroves. The study also indicated that threatened date palm Phoenix paludosa leaves can accumulate 74% and 73% of Cu and Fe, respectively, from the soil. Now a day, there has been a spurt in mangrove plantations worldwide for the conservation of mangrove ecosystem using ecological engineering approaches. The present study is very much useful to choose a proper plant to decontaminate the soil from various heavy metal pollutants for effective management of mangrove wetlands.  相似文献   

2.
本文主要研究了南黄海(32°N)沉积物间隙水中的Fe,Mn,Cu,Co,Ni与其硫化物及粘土矿物间的关系,结果表明:间隙水中的Mn~(2+),Cu~(2+)硫化物趋向于沉淀,Co~(2+),Ni~(2+)硫化物趋向于溶解,Fe~(2+)则有其硫化物的溶解-沉淀控制,Mn~(2+),Cu~(2+)还有其他体系和硫化物体系共同控制其浓度,间隙水中的Fe~(2+)可被蒙脱石吸附,Mn~(2+)被绿泥石吸附,Ca~(2+),Ni~(2+)被蒙脱石、绿泥石吸附,Co~(2+)被绿泥石、蒙脱石吸附,Fe~(2+),Mn~(2+)对粘土矿物吸附剂的专属性要求远比Cu~(2+),Co~(2地+),Ni~(2+)高,蒙脱石是南黄海沉积物中最重要的阳离子吸附剂,绿泥石次之。  相似文献   

3.
Urinary stone diseases are increasing in the Middle East. The majority of urinary stone cases are found in the northern part of the country. Stone samples taken from patients living in the Irbid area were collected from Princess Basma Hospital. The present study concentrates on the mineralogical and chemical composition of the urinary stones and on the effective environmental factors that assist in developing the different types of urinary stones. Using X-ray diffraction techniques, the mineralogical composition of the urinary stones was found to be as follows: oxalate, cholesten, and uric acid, with cystine stones occuring more frequently than the others. Cholesten and calcium oxalate stones are the most dominant types of stones. Calcium oxalate is the most common type of oxalate stone. Calcium oxalate is represented in: whewellite, wheddellite, and calcium carbonate oxalate hydrate minerals, in addition to other minerals such as brushite, ammonium phosphate, vaterite, valleriite, and bobierrite from other types of stones. Bobierrite (phosphate group) is a new mineral reported in urinary stones, and this has not been determined in any previous study worldwide. Apatite (calcium phosphate) is deduced using scanning electron microscope (SEM) images. The SEM technique determined crystal forms and systems, shapes, morphological features, and the names of the minerals forming urine stones, while optical properties are studied by polarizing microscope. X-ray fluorescence technique determined the concentrations of major and some trace elements. It revealed that Ca is the main constituent of the urinary stones, especially those composed of calcium oxalate and calcium phosphate. The concentration of trace elements was Ba = 1.57, P = 3.61, Fe = 1.78, S = 2.08, Zr = 4.63, Mo = 3.92, Cu = 1.89, Co = 1.56, and F = 4.2% and was higher in the urinary stones of Jordanian patients than in foreigners in the country. Questionnaires completed by patients suggest that the most significant factors directly effecting the formation of stones are water, climate conditions, food rich in protein and rich in different chemicals. Moreover, some drugs and diseases might also help in developing other stones.  相似文献   

4.
Speciations of metals were assessed in a tropical rain-fed river, flowing through the highly economically important part of the India. The pattern of distribution of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) were evaluated in water and sediment along with mineralogical characterization, changes with different water quality parameters and their respective health hazard to the local population along the Damodar River basin during pre-monsoon and post-monsoon seasons. The outcome of the speciation analysis using MINTEQ indicated that free metal ions, carbonate, chloride and sulfate ions were predominantly in anionic inorganic fractions, while in cationic inorganic fractions metal loads were negligible. Metals loads were higher in sediment phase than in the aqueous phase. The estimated values of Igeo in river sediment during both the seasons showed that most of the metals were found in the Igeo class 0–1 which represents unpolluted to moderately polluted sediment status. The result of partition coefficient indicated the strong retention capability of Cr, Pb, Co and Mn, while Cd, Zn, Cu and Ni have resilient mobility capacity. The mineralogical analysis of sediment samples indicated that in Damodar River, quartz, kaolinite and calcite minerals were dominantly present. The hazard index values of Cd, Co and Cr were >?1 in river water, which suggested potential health risk for the children. A combination of pragmatic, computational and statistical relationship between ionic species and fractions of metals represented a strong persuasion for identifying the alikeness among the different sites of the river.  相似文献   

5.
Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L−1?h−1 for Cu(II) at an initial concentration of 50 mg?L−1 and 5.3±0.4 mg?L−1 h−1 for Co(II) at an initial 40 mg?L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L−1?h−1) and Co(II) (6.4 mg?L−1?h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.  相似文献   

6.
7.
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg?1) of 0.13–0.63 for Cd, 11.89–21.90 for Co, 48.65–81.84 for Cr, 21.26–36.60 for Cu, 299.59–683.48 for Mn, 22.43–35.39 for Ni, 10.68–36.59 for Pb, 50.28–199.07 for Zn and 8.09–65.34 for Hg (in ng g?1), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg?1) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g?1), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.  相似文献   

8.
In the present article, a simple, rapid, sensitive and economical method has been developed for the simultaneous separation and preconcentration of the trace amounts of copper, nickel, cobalt and manganese in water samples by using modified XAD-4 resins. The sorption was quantitative in the pH range 6.0–9.0, whereas quantitative desorption occurred instantaneously with 5.0 mL of 2 M HNO3, and selected elements have been determined by using flame atomic absorption spectrometry. Dynamic ranges were 0.04–3.5, 0.1–6.0, 0.04–4.5 and 0.04–4.0 μg/mL for copper, nickel, cobalt and manganese, respectively. The detection limits were 9.2, 28.6, 12.3 and 5.7 ng/mL for Cu(II), Ni(II), Co(II) and Mn(II), respectively. The effects of the experimental parameters, including the sample pH, eluent type, interference ions and breakthrough volume, were studied for separation and preconcentration of Cu(II), Ni(II), Co(II) and Mn(II) ions. Determination of these ions in standard samples confirmed that the proposed method has good accuracy. The proposed method was used for the determination of these ions in water samples.  相似文献   

9.
Increased risk of ill-health and diseases has been associated with employment in the ferro-alloy factory. Since measurement of transition metals in human blood and hair along with respective exposure rates, provides a means of assessing individual risk, it has been the most important part of the study. In the study majority of the elements in the transition series, such as, vanadium (V), chromium (Cr), iron (Fe), manganese (Mn), cobalt, (Co) nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo) and cadmium (Cd) were considered which are randomly emitted from the source, that is, manganese ore (used during ferro-alloy manufacturing process). The commonly available transition, metals, observed in biological samples of ferro-alloy workers, were found to be Fe, Zn, Co, Ni, Cu, Cr, Cd, V Mn and Mo in blood, while in hair, Mn, Fe, Zn, Co, Ni, Cu, Cr, Cd, V and Mo were present in decreasing order Surveillance of bio-concentration of these metals in workers, exposed to close proximity of the coke-ovens and smelting furnaces, revealed that the workers were prone to several physical disorders.  相似文献   

10.
The present article describes the synthesis, structural features and toxicological studies of the complexes of the type [M(L)(dipy-amine)(H2O)] or [M(L)(bendan)(H2O)] where M?=?Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), H2L?=?salicylidene-o-aminothiophenol, dipy-amine?=di(2-pyridyal)amine, or bendan?=?bis(benzylidene)1,8-diaminonaphthalene. The complexes have been characterized on the basis of elemental analyses, electronic spectra, magnetic measurement and thermogravimetric analyses. The nature of the bonding has been discussed on the basis of infrared spectral data. A thermal study of the complexes has been carried out to ascertain their thermal stability. Magnetic susceptibility measurements and electronic spectral data suggest a six-coordinated octahedral structure for these complexes. The complexes of Mn(II), Co(II), Ni(II), Cu(II) are paramagnetic, while Zn(II) and Cd(II) are diamagnetic in nature. The toxic effects of the investigated complexes were tested against three Gram-negative bacteria, Salmonella typhi, Escherichia coli and Serratia marcescens by the “Disc Diffusion Method”. It is observed that the complexes show higher toxic effects as compared to the ligands, metal salts and control (DMSO), but moderate toxic effects as compared to the standard drug (tetracycline) and the results are discussed.  相似文献   

11.
The rapid increase in population together with unplanned disposal of effluents from various industries has resulted in accumulation of various heavy metals like As, Cr, Cu, Hg, Ni, Pb and Zn in soil ecosystem which ultimately causes DNA damage in living systems. Considering this, the present study was designed to evaluate the content of various heavy metals (Cu, Cr, Co, Hg, Mn, Ni, Zn) and genotoxicity/mutagenicity of soil samples collected from the outskirts of two industries viz. zinc coating industry (SI) and copper sulphate manufacturing industry (SII) employing Allium root anaphase aberration assay (A/RAAA) and Ames assay. The physicochemical parameters like bulk density, water holding capacity, moisture content, pH, nitrates, phosphates and potassium were also estimated. It was observed that SI sample contained Ni (6.86 mg g-1), Zn (6.53 mg g-1), Co (5.05 mg g-1) and Cr (4.49 mg g-1), while SII contained Cu (32.86 mg g-1), Ni (9.66 mg g-1), Co (6.85 mg g-1) and Zn (5.41 mg g-1). In A/RAA assay, the percentage of cells with anaphase aberrations ranged from 3.63 to 10.67 and 0.38 to 4.83% for samples SI and SII, respectively. In Ames test, sample SII was found to be lethal to Salmonella tester strains at all concentrations used, while sample SI was found to be mutagenic in TA100 strains of Salmonella typhimurium. Sample SII was found to be strongly acidic with pH 3.46. The present study focuses on the increasing heavy metal pollution in Amritsar city due to industrial discharges over lands and also infers that both bioassays Ames and A/RAAA can serve as first alert indication of pollution.  相似文献   

12.
The speciation of trace metals in surface sediment in Kisumu Carwash area of Winam Gulf, was studied and results compared with those found at Usoma beach which was found to be several orders of magnitude less polluted. High proportions of the metals were bioavailable (fractions 1–6) with BA% ranging from 21.7% (Al) to 94.5% (Pb) at Carwash and 19.6% (Al) to ~100% (for Cd and Pb) at Usoma beach. The readily mobilizable fraction (fractions 1–4) decreased in the order: Pb > Mn > Sn > Cu > Co > Zn > Mg > Cd > Mo > Ni > Cr > Fe > Al at Carwash and Mn > Mo > Sn > Pb > Cd > Mg > Cu > Zn > Co > Ni > Fe > Cr > Al at Usoma beach. The total Zn, Cd, Cr, and Cu sediment concentrations at Carwash were higher than the threshold effect concentrations (TECs), although their bioavailable concentrations were lower than these limits. Both the total and bioavailable concentrations of Pb in surface sediment at Kisumu Carwash area were higher than the TEC threshold limit indicating significant contamination from this heavy metal. Although there was a general good agreement on data obtained by sequential extraction as compared with those obtained by direct aqua-regia digestion, there were large discrepancies for some specific metal analytes which could be accounted for in terms of analytical variations and lack of uniformity in physical and chemical composition of the sediment samples analyzed.  相似文献   

13.
宝鸡城市街尘、土壤及河流沉积物重金属形态迁移特征   总被引:1,自引:0,他引:1  
在宝鸡城市街尘、土壤及河流沉积物基本理化性质和重金属元素含量分析的基础上,重点研究了重金属元素在街尘、土壤及河流沉积物中的赋存形态和迁移特征.结果表明:在街尘中Cu主要以可氧化态和残余态形式存在,Pb主要以可还原态和可氧化态形式存在,Zn和Cd主要以乙酸可提取态形式存在,Mn、Fe、Co、Ni和Cr主要以残余态形式存在...  相似文献   

14.
The distribution and enrichment of selected trace metals (Cd, Cr, Cu, Ni, Pb, Sn, Zn) in benthic sediments of the Southport Broadwater, a semi-enclosed coastal body of water adjacent to the Gold Coast city, south-eastern Queensland, Australia, was studied with the objective of assessing the extent and degree of sediment contamination. Sediment samples from the 0–10 cm and 10–20 cm depth intervals of 32 sites within the Southport Broadwater and surrounding residential canals were analysed for particle size distribution, pH, organic C and ‘near-total’ major (Al, Ca, Fe, Mn) and trace (Cd, Cr, Cu, Ni, Pb, Sn, Zn) metal contents. Sediment contamination for each trace metal was assessed by (1) comparison with Australian sediment quality guidelines, (2) calculation of the index of geoaccumulation based on regional background values, and (3) geochemical normalisation against Al (i.e. the abundance of alumino-silicate clay minerals). Based on this approach, the results indicate that submerged sediments in the study area are not presently enriched with Cd, Cr or Ni, with the spatial distribution of these metals being very well explained by the abundance of alumino-silicate clay minerals. However, several sites were strongly enriched with Cu, Pb, Sn and Zn, arising from sources related to either urban runoff or vessel maintenance activities. The study indicates that several varying approaches are needed for a satisfactory assessment of contaminant enrichment in estuarine sediments.  相似文献   

15.
A serial batch leaching experiment has been carried out to evaluate the release of elements from the ash of Pinus halepensis needles burned under two test conditions—with and without treatment of the forest species with the carbonate minerals (huntite and hydromagnesite) in aqueous solution (pH 6). The ash (before and after leaching) and leachates were analyzed using atomic absorption spectroscopy and X-ray diffraction. Compared with data from samples treated with the commercially available, phosphate-based fire retardant diammonium phosphate (DAP), we found that use of huntite or hydromagnesite was much more successful in obstructing the release of the toxic elements present in the ash, probably because of the alkaline conditions resulting from decomposition of the minerals during burning. In contrast, DAP tended to be more able to facilitate the extraction of some toxic metals (e.g., Zn, Cu, Mn), probably because of the acidic conditions resulting from its decomposition to phosphoric acid. Data from this study thus lend strong support to the use of magnesium carbonate minerals as new wildfire retardants, because they were shown to be more friendly to the environment (e.g., soil, ground, and underground water streams) than those currently in use (e.g., phosphate or sulfate salt type).  相似文献   

16.
This study aimed to assess soil nutrient status and heavy metal content and their impact on the predominant soil bacterial communities of mangroves of the Mahanadi Delta. Mangrove soil of the Mahanadi Delta is slightly acidic and the levels of soil nutrients such as carbon, nitrogen, phosphorous and potash vary with season and site. The seasonal average concentrations (μg/g) of various heavy metals were in the range: 14 810–63 370 (Fe), 2.8–32.6 (Cu), 13.4–55.7 (Ni), 1.8–7.9 (Cd), 16.6–54.7 (Pb), 24.4–132.5 (Zn) and 13.3–48.2 (Co). Among the different heavy metals analysed, Co, Cu and Cd were above their permissible limits, as prescribed by Indian Standards (Co=17 μg/g, Cu=30 μ g/g, Cd=3–6 μ g/g), indicating pollution in the mangrove soil. A viable plate count revealed the presence of different groups of bacteria in the mangrove soil, i.e. heterotrophs, free-living N2 fixers, nitrifyers, denitrifyers, phosphate solubilisers, cellulose degraders and sulfur oxidisers. Principal component analysis performed using multivariate statistical methods showed a positive relationship between soil nutrients and microbial load. Whereas metal content such as Cu, Co and Ni showed a negative impact on some of the studied soil bacteria.  相似文献   

17.
The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (<3-mm fraction) was carelessly deposited in gardens, forests, and into a sinkhole, which has an underground link with the Kupica River, a tributary of the Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-μm fraction) has shown that it contains 23.5% clay-size material in comparison with 7–8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers.  相似文献   

18.
A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6–120 mg/kg) and slightly elevated As content (1–13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg0), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006–0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9–31.5 %) in the dust samples.  相似文献   

19.
The Boles?aw–Bukowno mining area in Poland is highly polluted by elements such as Zn, Pb, Cd and As. The reactivity and mobility of toxic elements such as Tl are poorly known. Here, we studied by sequential extraction the mobility of As, Cd, Co, Cr, Cu, Mn, Mo, Pb, Tl and Zn in sediments from two water reservoirs near Bukowno. Results show that available As, Co, Mn, Pb and Zn are found in carbonate minerals. Available Cd, Cu and Tl are found in sulphides and organic matter. The extractability of As, Cr, Mo and Tl was rather poor. By contrast, 85 % of total Cd, Pb and Zn was mobile. We discuss Tl and Mo association in carbonate sediments from ore deposits.  相似文献   

20.
土壤中铜的生物可给性及其对人体的健康风险评价   总被引:3,自引:0,他引:3  
为了研究土壤中铜的生物可给性与土壤理化性质之间的相互关系以及人体无意摄入土壤铜的风险,采集我国一些地区的15个土壤样品,利用in vitro方法研究了这些土壤中铜的生物可给性及其对人体的健康风险。结果表明,有2个土壤样品中铜的含量高过我国土壤环境质量标准的三级标准,有8个土壤样品中铜的含量高过二级标准;土壤中铜的溶解态浓度及其生物可给性变化很大,胃肠阶段铜的溶解态含量分别为5.2~308.8 mg·kg~(-1)和5.9~348.5 mg·kg~(-1),平均值分别为74.8 mg·kg~(-1)和82.0 mg·kg~(-1);而铜的生物可给性分别为183%~66.6%和213%~77.4%,平均值分别为442%和51.1%。胃阶段铜的生物可给性与土壤有机质和pH呈显著正相关,而与粘粒呈显著负相关,与铁铝氧化物有显著相关性;小肠阶段铜的生物可给性与土壤有机质和pH呈显著正相关,与土壤中总铜和锰氧化物含量呈显著负相关。如以胃阶段为判断,无意摄人土壤中铜对儿童的TDI(tolerable daily intake)贡献率除浙江富阳为2.51%外,有12个土壤样品低于1.00%,最低为0.11%。如以小肠阶段为判断,无意摄入土壤中铜对儿童的TDI贡献率除浙江富阳和浙江台州的土壤分别为2.83%和2.01%,另有12个土壤样品低于1.00%。可见,对于本研究中大多数土壤,通过口部无意摄入土壤中铜的对人体并没有很高的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号