首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为研究乘客在大客车正面碰撞事故中的损伤机理,建立某全承载大客车有限元模型,并通过试验验证有限元模型的仿真精度。基于验证模型对不同碰撞速度条件下大客车车身结构力学响应、生存空间、座椅固定件强度、乘员运动响应和损伤等进行综合分析及评价。结果表明:高速碰撞条件下,驾驶员生存空间容易被侵入,座椅固定件强度存在失效的风险;乘员头部、颈部和胸部的损伤值受碰撞速度、安全带类型和乘员位置影响较大;三点式安全带保护效果明显优于两点式安全带。  相似文献   

2.
Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that experience overrepresented crashes, or an increase in the potential for crashes with higher severity levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating safety improvement resources. Methods: This paper uses urban and suburban intersection data in Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal (MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS) model to assess the methodological rationality and accuracy by accommodating for the unobserved factors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle damage level are estimated using the same two methodologies to supplement the injury severity in estimating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low. Results: The model estimation results highlight the presence of correlations of crash counts among severity levels, as well as the crash counts in total and crash proportions by different severity levels. A comparison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions: Crash severity counts are significantly correlated and should be accommodated in crash prediction models. Practical application: The findings of this research could help select sound and reliable methodologies for predicting highway accidents by injury severity. When crash data samples have challenges associated with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle damage can be appropriate as an alternative to injury severity in crash prediction by severity.  相似文献   

3.
PROBLEM: The expected substantial increase in people aged 65 or older is important for those concerned about transportation injuries. However, much of the previous research concentrates on older drivers and overlooks the fact that vehicle and crash factors may provide significant explanations of older occupant injury rates. METHOD: Differences across age groups are explored using two nationwide travel surveys, crash involvement, fatalities, and injuries from crash databases and an ordered probit model of injury severity. RESULTS AND DISCUSSION: Two noticeable differences that help explain injury risk are that older people are more likely to travel in passenger cars than younger people who frequently use light trucks, and that seriously injured older occupants are more likely to be involved in side-impact crashes than their younger counterparts. IMPACT: Increased attention to vehicle engagement in side-impact crashes and to vehicle technologies that can help drivers avoid side collisions would be particularly helpful for older occupants.  相似文献   

4.
Introduction: Traffic crashes could result in severe outcomes such as injuries and deaths. Thus, understanding factors associated with crash severity is of practical importance. Few studies have deeply examined how prior violation and crash experience of drivers and roadways are associated with crash severity. Method: In this study, a set of risk indicators of road users and roadways were developed based on their prior violation and crash records (e.g., cumulative crash frequency of a roadway), in order to reflect certain aspect or degree of their driving risk. To explore the impacts of those indicators on crash severity and complex interactions among all contributing factors, a Bayesian network approach was developed, based on citywide crash data collected in Kunshan, China from 2016 to 2018. A variable selection procedure based on Information Value (IV) was developed to identify significant variables, and the Bayesian network was employed to explicitly explore statistical associations between crash severity and significant variables. Results: In terms of balanced accuracy and AUCs, the proposed approach performed reasonably well. Bayesian modeling results indicated that the prior crash/violation experiences of road users and roadways were very important risk indicators. For example, migrant workers tend to have high injury risk due to their dangerous violation behaviors, such as retrograding, red-light running, and right-of-way violation. Furthermore, results showed that certain variable combinations had enhanced impacts on severity outcome than single variables. For example, when a migrant worker and a non-motorized vehicle are involved in a crash happening on a local road with high cumulative violation frequency in the previous year, the probability for drivers suffering serious injury or fatality is much higher than that caused by any single factor. Practical applications: The proposed methodology and modeling results provide insights for developing effective countermeasures to reduce crash severity and improve traffic system safety performance.  相似文献   

5.
This study compares highway crash incidence, injuries, and costs by vehicle type. Annual crash and injury incidence were estimated using Crashworthiness Data System (1988-1991), National Automotive Sampling System (1982-1986), General Estimates System (1992-1993), and Fatal Analysis Reporting System (1993) data. Costs were computed based on restraint use, body region, and threat-to-life severity of the injury. Costs were then allocated between vehicle types using three different methods in order to answer comparative safety questions. Motor vehicle and bicycle crash costs total $389 billion annually; 75% resulting from passenger vehicles. Motorcycles and bicycles have the highest costs per 1000 vehicle and passenger miles; costs per victim are highest for pedestrians, bicyclists, and motorcyclists. Costs per vehicle mile for heavy trucks and passenger cars are comparable but exceed costs for light trucks. Passenger vehicle occupants are safest if a crash occurs. Light truck, other single truck, and bus occupants have the lowest cost per passenger mile, but higher costs than air and rail travelers. Motorcyclists face the greatest risks. Combination trucks may not impose an excess risk to other drivers, but their drivers face large risks.  相似文献   

6.
OBJECTIVES: The majority of motor vehicle occupants who were killed or hospitalized in crashes in Kentucky in 2000-2001 occupied vehicles that were severely damaged in the crash. Even so, overall only a small percentage of all severely damaged vehicle occupants were killed or hospitalized. The purpose was to identify occupant, vehicle, crash, and roadway/environmental factors that were associated with increased risk of severe injury in crashes where the occupant's vehicle was severely damaged. METHODS: This study probabilistically linked Kentucky's statewide motor vehicle crash and inpatient hospital discharge data files for 2000 and 2001, and selected cases representing occupants of vehicles that were reported by police as having either "severe" or "very severe" damage. For occupants who were identified through data linkage as having been hospitalized, the Injury Severity Score (ISS) was calculated using ICDMAP-90 software, and the scores were stratified into the following categories: critical (>24), severe (15-24), moderate (9-14), and mild (<9). We then created an outcome variable, injury severity level, with five levels: killed; hospitalized with at least moderate injuries (ISS = critical, severe, or moderate); hospitalized with mild injuries (ISS = mild); injured according to the police report but not hospitalized; and no apparent injury according to the police report. We performed a stepwise, ordinal logistic regression of injury severity, using independent variables identified from the existing crash literature. RESULTS: Occupant risk factors for higher levels of injury severity selected by the regression were age (risk increased with age, other factors being equal), female gender, restraint non-use, ejection from the vehicle, and driver impairment (by alcohol and/or drugs). Crash risk factors included head-on collision, collision with a fixed object, vehicle rollover, and vehicle fire. Roadway/environmental factors were federal- or state-maintained roadway and posted speed limit 89 kph (55 mph) or greater. CONCLUSIONS: Many of the identified risk factors are explicitly or implicitly mentioned in the strategic plans of key organizations involved in highway safety and injury prevention in Kentucky. Our analysis provides additional evidence of their importance, and confirms that their mitigation will reduce injury severity in crashes involving severe vehicle damage. Additionally, older occupants and female occupants showed increased risks of serious injury, but to our knowledge these factors are not currently addressed in any state plans. An opportunity exists to clarify the nature of these risks through further studies, which might lead to the identification of countermeasures specific to these populations.  相似文献   

7.
Introduction: The state of Wyoming, like other western United States, is characterized by mountainous terrain. Such terrain is well noted for its severe downgrades and difficult geometry. Given the specific challenges of driving in such difficult terrain, crashes with severe injuries are bound to occur. The literature is replete with research about factors that influence crash injury severity under different conditions. Differences in geometric characteristics of downgrades and mechanics of vehicle operations on such sections mean different factors may be at play in impacting crash severity in contrast to straight, level roadway sections. However, the impact of downgrades on injury severity has not been fully explored in the literature. This study is thus an attempt to fill this research gap. In this paper, an investigation was carried out to determine the influencing factors of crash injury severities of downgrade crashes. Method: Due to the ordered nature of the response variable, the ordered logit model was chosen to investigate the influencing factors of crash injury severities of downgrade crashes. The model was calibrated separately for single and multiple-vehicle crashes to ensure the different factors influencing both types of crashes were captured. Results: The parameter estimates were as expected and mostly had signs consistent with engineering intuition. The results of the ordered model for single-vehicle crashes indicated that alcohol, gender, road condition, vehicle type, point of impact, vehicle maneuver, safety equipment use, driver action, and annual average daily traffic (AADT) per lane all impacted the injury severity of downgrade crashes. Safety equipment use, lighting conditions, posted speed limit, and lane width were also found to be significant factors influencing multiple-vehicle downgrade crashes. Injury severity probability plots were included as part of the study to provide a pictorial representation of how some of the variables change in response to each level of crash injury severity. Conclusion: Overall, this study provides insights into contributory factors of downgrade crashes. The literature review indicated that there are substantial differences between single- and multiple vehicle crashes. This was confirmed by the analysis which showed that mostly, separate factors impacted the crash injury severity of the two crash types. Practical applications: The results of this study could be used by policy makers, in other locations, to reduce downgrade crashes in mountainous areas.  相似文献   

8.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   

9.
Introduction: One of the challenging tasks for drivers is the ability to change lanes around large commercial motor vehicles. Lane changing is often characterized by speed, and crashes that occur due to unsafe lane changes can have serious consequences. Considering the economic importance of commercial trucks, ensuring the safety, security, and resilience of freight transportation is of paramount concern to the United States Department of Transportation and other stakeholders. Method: In this study, a mixed (random parameters) logit model was developed to better understand the relationship between crash factors and associated injury severities of commercial vehicle crashes involving lane change on interstate highways. The study was based on 2009–2016 crash data from Alabama. Results: Preliminary data analysis showed that about 4% of the observed crashes were major injury crashes and drivers of commercial motor vehicles were at-fault in more than half of the crashes. Acknowledging potential crash data limitations, the model estimation results reveal that there is increased probability of major injury when lane change crashes occurred on dark unlit portions of interstates and involve older drivers, at-fault commercial vehicle drivers, and female drivers. The results further show that lane change crashes that occurred on interstates with higher number of travel lanes were less likely to have major injury outcomes. Practical Applications: These findings can help policy makers and state transportation agencies increase awareness on the hazards of changing lanes in the immediate vicinity and driving in the blind spots of large commercial motor vehicles. Additionally, law enforcement efforts may be intensified during times and locations of increased unsafe lane changing activities. These findings may also be useful in commercial vehicle driver training and driver licensing programs.  相似文献   

10.
Introduction: There have been a number of studies that have led to the development of safety risk assessment models to quantify the probability of crash frequencies on roadway facilities (both at micro- and macro-levels), over a specified time period. However, past research has rarely focused on heterogeneous traffic conditions in developing countries. Method: This paper puts forward several models related to the traditional count approach to estimate crash frequency at a micro-level in a non-lane based bi-directional heterogeneous traffic environment. The paper shows the results of dispersion, zero-inflation, and random heterogeneity effects of different exogenous factors by comparing Poisson (P); Negative Binomial (NB); random and fixed parameter Zero-Inflated Poisson (ZIP); and Latent Class Models (LCM). The empirical analysis is based on data from a section of a major national highway in Bangladesh. The performance of the models was validated using different statistical goodness-of-fit measures that compared the estimated and observed average crash frequencies at individual locations. With the identification of the most significant influencing factors, the paper discusses the practical policy implications using partial effects analysis and spatial distribution. Results: It was found that the Zero-Inflated Random Parameter model gives a slightly better statistical fit when compared to alternative approaches. Practical applications: This micro-level modeling approach would be useful to identify significant crash risk factors; to prioritize road sections according to their safety level; to select site-specific appropriate counter-measures; and devise proactive target oriented safety management strategies. Thus, the results shown here could be a point of reference in the planning, designing, maintaining, and managing two-lane highway sections in developing countries.  相似文献   

11.
Objective: The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors.

Methods: Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively.

Results: There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted).

Conclusions: Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.  相似文献   

12.
INTRODUCTION: This study investigated the survival rates of occupants of passenger cars involved in a fatal crash between 2000 and 2003. METHODS: The information from every fatal crash in the United States between 2000 and 2003 was analyzed. Variables such as seat position, point of impact, rollover, restraint use, vehicle type, vehicle weight, occupant age, and injury severity were extracted from the Fatality Analysis Reporting System (FARS). Univariate and a full logistic multivariate model analyses were performed. RESULTS: The data show that the rear middle seat is safer than any other occupant position when involved in a fatal crash. Overall, the rear (2(nd) row) seating positions have a 29.1% (Univariate Analysis, p<.0001, OR 1.29, 95% CI 1.22 - 1.37) increased odds of survival over the first row seating positions and the rear middle seat has a 25% (Univariate Analysis, p<.0001, OR 1.25, 95% CI 1.17 - 1.34) increased odds of survival over the other rear seat positions. After correcting for potential confounders, occupants of the rear middle seat have a 13% (Logistic Regression, p<.001, 95% CI 1.02 - 1.26) increased chance of survival when involved in a crash with a fatality than occupants in other rear seats. CONCLUSION: This study has shown that the safest position for any occupant involved in a motor-vehicle crash is the rear middle seat. IMPACT ON INDUSTRY: The results of this research may impact how automobile manufacturers look at future rear middle seat designs. If the rear seat was to be designed exactly like its outboard counterparts (headrest, armrests, lap and shoulder belt, etc.) people may choose to sit on it more often rather than waiting to use it out of necessity due to multiple rear seat occupants.  相似文献   

13.
This study set out to develop a composite road safety indicator for benchmarking countries’ road safety performance, which would combine the main layers of the road safety pyramid which describes the complex nature of road safety activities, performance and outcomes. Four groups of basic safety indicators were considered, which refer to: policy performance (road safety programmes), final road safety outcomes (fatality rates, scope of traffic injury), intermediate outcomes (wearing rates of seat belts, crashworthiness and composition of vehicle fleet, alcohol-impaired driving), and background characteristics of countries (motorization level, population density). The analysis used the data collected for 27 European countries. Weights based on statistical models were used to combine the basic indicators into a composite one. Principal Component Analysis and Common Factor Analysis weighting were examined. The composite indicators, estimated by several methods, enabled us to rank and group the countries according to their safety performance.The analysis revealed that the countries’ ranking based on the composite indicators is not necessarily similar to the traditional ranking of countries based on fatality rates only. Furthermore, it was observed that the indicators belonging to the final outcomes and intermediate outcomes are not uniform in their behaviour. Indicators which were found to be more consistent and influential and termed a ‘core set of basic indicators’ are recommended for future uses. The general conclusion is that the design of a composite road safety indicator in which relevant information from the different components of the road safety pyramid has been captured and weighted is realistic and meaningful. Such an indicator gives a more enriched picture of road safety than a ranking based only on fatality rates, which is the common practice at present. Grouping countries in this process is promising and seems to be preferable to simply ranking countries.  相似文献   

14.
带乘员及约束系统汽车正面碰撞的有限元法仿真研究   总被引:3,自引:0,他引:3  
采用计算机模拟的方法,对国产某轿车发生正面碰撞时,乘员在佩带三点式安全带的约束状态下的运动响应进行研究,从乘员的运动响应情况、乘员舱的变形情况、假人的HIC值等几个方面分析了该车型的乘员保护安全性能.模拟结果表明,该车达到了安全法规的要求.并探讨了运用有限元法对带乘员及约束系统的整车正面碰撞的计算机模拟方法.  相似文献   

15.
Abstract

Objectives: Earlier research has shown that the rear row is safer for occupants in crashes than the front row, but there is evidence that improvements in front seat occupant protection in more recent vehicle model years have reduced the safety advantage of the rear seat versus the front seat. The study objective was to identify factors that contribute to serious and fatal injuries in belted rear seat occupants in frontal crashes in newer model year vehicles.

Methods: A case series review of belted rear seat occupants who were seriously injured or killed in frontal crashes was conducted. Occupants in frontal crashes were eligible for inclusion if they were 6 years old or older and belted in the rear of a 2000 or newer model year passenger vehicle within 10 model years of the crash year. Crashes were identified using the 2004–2015 National Automotive Sampling System Crashworthiness Data System (NASS-CDS) and included all eligible occupants with at least one Abbreviated Injury Scale (AIS) 3 or greater injury. Using these same inclusion criteria but split into younger (6 to 12 years) and older (55+ years) cohorts, fatal crashes were identified in the 2014–2015 Fatality Analysis Reporting System (FARS) and then local police jurisdictions were contacted for complete crash records.

Results: Detailed case series review was completed for 117 rear seat occupants: 36 with Maximum Abbreviated Injury Scale (MAIS) 3+ injuries in NASS-CDS and 81 fatalities identified in FARS. More than half of the injured and killed rear occupants were more severely injured than front seat occupants in the same crash. Serious chest injury, primarily caused by seat belt loading, was present in 22 of the injured occupants and 17 of the 37 fatalities with documented injuries. Nine injured occupants and 18 fatalities sustained serious head injury, primarily from contact with the vehicle interior or severe intrusion. For fatal cases, 12 crashes were considered unsurvivable due to a complete loss of occupant space. For cases considered survivable, intrusion was not a large contributor to fatality.

Discussion: Rear seat occupants sustained serious and fatal injuries due to belt loading in crashes in which front seat occupants survived, suggesting a discrepancy in restraint performance between the front and rear rows. Restraint strategies that reduce loading to the chest should be considered, but there may be potential tradeoffs with increased head excursion, particularly in the absence of rear seat airbags. Any new restraint designs should consider the unique needs of the rear seat environment.  相似文献   

16.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

17.
OBJECTIVE: Impaired drivers and other high-risk road users are less likely to use their safety belts, thus increasing the risk of fatal injury in the event of a crash. Although safety belt laws have been shown to increase wearing rates for daytime non-crash-involved drivers and their front-seat passengers, little evidence is available on the effect these laws have on belt usage by crash-involved drinking drivers and their passengers. METHODS: This study evaluated the influence of primary safety belt law upgrades from secondary laws on front-seat occupants of passenger cars driven by drinking drivers in fatal crashes in five states: California, Illinois, Maryland, Michigan, and Washington. The outcome measures used to evaluate these law upgrades were (1) the change in safety belt usage rates of front-seat occupants in passenger cars driven by drinking drivers in fatal crashes and (2) the change in alcohol-related front-seat occupant fatalities in passenger cars driven by drinking drivers. RESULTS: Four of the five states demonstrated increases in safety belt use by front-seat occupants of passenger cars of drinking drivers in fatal crashes following the upgrade to primary safety belt laws. Three states (California, Michigan, and Washington) experienced significant reductions in the number of front-seat occupant fatalities in vehicles driven by drinking drivers. CONCLUSIONS: The adoption of primary law upgrades was associated with significant increases in safety belt use (four of five states) and significant reductions in fatalities among high-risk occupants (i.e., front-seat occupants involved in fatal crashes in vehicles driven by drinking drivers) in three of the five states studied.  相似文献   

18.
Crash fault determination is one of the most critical issues in applications of quasi-induced exposure. Traditionally, the driver citation issued by the investigating police officer is the primary source to assign responsibility for motor vehicle crashes. Such citations are based on the “evidence” or observation of a moving violation (such as engaged hazardous actions) in combination with non-moving violations (such as suspended driver license) prior to the crash. The objective here is to identify the contributing factors that may lead to driver citations in two-vehicle crashes in addition to the hazardous action. Multivariate binary logistic regression modeling is employed to explore the behavior of the investigating police officer in terms of issuing citation at the crash scene. A series of explanatory parameters including roadway characteristics, environmental factors, and driver and vehicle attributes is assessed. The results show that whether the crash type was a hit-and-run, alcohol and illegal drug use, driver gender, driver age, and injury severity all appear to have significant impacts on the investigating officer’s decision-making. Specific examples are given to demonstrate how two factors hit-and-run and drinking status can skew the exposure estimates in the context of quasi-induced exposure. The findings will help to serve as a basis to select appropriate parameters in assigning crash responsibility in quasi-induced exposure applications; and we make recommendations to modify existing crash database for better safety research in the future.  相似文献   

19.
Objective: The Insurance Institute for Highway Safety (IIHS) introduced its side impact consumer information test program in 2003. Since that time, side airbags and structural improvements have been implemented across the fleet and the proportion of good ratings has increased to 93% of 2012–2014 model year vehicles. Research has shown that drivers of good-rated vehicles are 70% less likely to die in a left-side crash than drivers of poor-rated vehicles. Despite these improvements, side impact fatalities accounted for about one quarter of passenger vehicle occupant fatalities in 2012. This study is a detailed analysis of real-world cases with serious injury resulting from side crashes of vehicles with good ratings in the IIHS side impact test.

Methods: NASS-CDS and Crash Injury Research and Engineering Network (CIREN) were queried for occupants of good-rated vehicles who sustained an Abbreviated Injury Scale (AIS) ≥ 3 injury in a side-impact crash. The resulting 110 cases were categorized by impact configuration and other factors that contributed to injury. Patterns of impact configuration, restraint performance, and occupant injury were identified and discussed in the context of potential upgrades to the current IIHS side impact test.

Results: Three quarters of the injured occupants were involved in near-side impacts. For these occupants, the most common factors contributing to injury were crash severities greater than the IIHS test, inadequate side-airbag performance, and lack of side-airbag coverage for the injured body region. In the cases where an airbag was present but did not prevent the injury, occupants were often exposed to loading centered farther forward on the vehicle than in the IIHS test. Around 40% of the far-side occupants were injured from contact with the struck-side interior structure, and almost all of these cases were more severe than the IIHS test. The remaining far-side occupants were mostly elderly and sustained injury from the center console, instrument panel, or seat belt. In addition, many far-side occupants were likely out of position due to events preceding the side impact and/or being unbelted.

Conclusion: Individual changes to the IIHS side impact test have the potential to reduce the number of serious injuries in real-world crashes. These include impacting the vehicle farther forward (relevant to 28% of all cases studied), greater test severity (17%), the inclusion of far-side occupants (9%), and more restrictive injury criteria (9%). Combinations of these changes could be more effective.  相似文献   

20.
Introduction: The high percentage of fatalities in pedestrian-involved crashes is a critical social problem. The purpose of this study is to investigate factors influencing injury severity in pedestrian crashes by examining the demographic and socioeconomic characteristics of the regions where crashes occurred. Method: To understand the correlation between the unobserved characteristics of pedestrian crashes in a defined region, we apply a hierarchical ordered model, in which we set crash characteristics as lower-level variables and municipality characteristics as upper-level. Pedestrian crash data were collected and analyzed for a three-year period from 2011 to 2013. The estimation results show the statistically significant factors that increase injury severity of pedestrian crashes. Results: At the crash level, the factors associated with increased severity of pedestrian injury include intoxicated drivers, road-crossing pedestrians, elderly pedestrians, heavy vehicles, wide roads, darkness, and fog. At the municipality level, municipalities with low population density, lower level of financial independence, fewer doctors, and a higher percentage of elderly residents experience more severe pedestrian crashes. Municipalities ranked as having the top 10% pedestrian fatality rate (fatalities per 100,000 residents) have rates 7.4 times higher than municipalities with the lowest 10% rate of fatalities. Their demographic and socioeconomic characteristics also have significant differences. The proposed model accounts for a 7% unexplained variation in injury severity outcomes between the municipalities where crashes occurred. Conclusion: To enhance the safety of vulnerable pedestrians, considerable investments of time and effort in pedestrian safety facilities and zones should be made. More certain and severe punishments should be also given for the traffic violations that increase injury severity of pedestrian crashes. Furthermore, central and local governments should play a cooperative role to reduce pedestrian fatalities. Practical applications: Based on our study results, we suggest policy directions to enhance pedestrian safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号