首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five bioassays (inhibition of lettuce germination and growth, earthworm mortality, inhibition of springtail population growth, avoidance by springtails) were compared, using four coke factory soils contaminated by PAHs and trace elements, before and after biotreatment. For each bioassay, several endpoints were combined in an ‘ecoscore’, a measure of test sensitivity. Ecoscores pooled over all tested bioassays revealed that most organisms were highly sensitive to the concentration of 3-ring PAHs. When four soils were combined, behavioural tests using the springtail Folsomia candida showed higher ecoscores, i.e. they were most sensitive to soil contamination. However, despite overall higher sensitivity of behavioural tests, which could be used for cheap and rapid assessment of soil toxicity, especially at low levels of contamination, some test endpoints were more sensitive than others, and this may differ from a soil to another, pointing to the need for a battery of bioassays when more itemized results are expected.  相似文献   

2.
Quantitative structure–activity relationships (QSARs) are an established tool in environmental risk assessment and a valuable alternative to the exhaustive use of test animals under REACH. In this study a QSAR was developed for the toxicity of a series of six chloroanilines to the soil-dwelling collembolan Folsomia candida in standardized natural LUFA2.2 soil. Toxicity endpoints incorporated in the QSAR were the concentrations causing 10% (EC10) and 50% (EC50) reduction in reproduction of F. candida. Toxicity was based on concentrations in interstitial water estimated from nominal concentrations in the soil and published soil–water partition coefficients. Estimated effect concentrations were negatively correlated with the lipophilicity of the compounds. Interstitial water concentrations for both the EC10 and EC50 for four compounds were determined by using solid-phase microextraction (SPME). Measured and estimated concentrations were comparable only for tetra- and pentachloroaniline. With decreasing chlorination the disparity between modelled and actual concentrations increased. Optimisation of the QSAR therefore could not be accomplished, showing the necessity to move from total soil to (bio)available concentration measurements.  相似文献   

3.
Toxicity profiles of two soils (a brownfield in Legazpi and an abandoned iron mine in Zugaztieta; Basque Country) contaminated with several metals (As, Zn, Pb and Cu in Legazpi; Zn, Pb, Cd and Cu in Zugaztieta) and petroleum hydrocarbons (in Legazpi) were determined using a multi-endpoint bioassay approach. Investigated soils exceeded screening values (SVs) of regulatory policies in force (Basque Country; Europe). Acute and chronic toxicity bioassays were conducted with a selected set of test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates, as well as with bioaccumulation studies in earthworms. The sensitivity of the test species and the toxicity endpoints varied depending on the soil. It was concluded that whilst Zugaztieta soil showed very little or no toxicity, Legazpi soil was toxic according to almost all the toxicity tests (solid phase Microtox®, D. discoideum inhibition of fruiting body formation and developmental cycle solid phase assays, lettuce seed germination and root elongation test, earthworm acute toxicity and reproduction tests, D. discoideum cell viability and replication elutriate assays). Thus, albeit both soils had similar SVs, their ecotoxicological risk, and therefore the need for intervening, was different for each soil as unveiled after toxicity profiling based on multiple endpoint bioassays. Such a toxicity profiling approach is suitable to be applied for scenario-targeted soil risk assessment in those cases where applicable national/regional soil legislation based on SVs demands further toxicity assessment.  相似文献   

4.
Four plant species (oilseed rape, Brassica napus L.; red clover, Trifolium pratense L.; ryegrass, Lolium perenne L.; and tomato, Lycopersicon esculentum L.) were tested on ten soils varying widely in soil properties to assess molybdenum (Mo) toxicity. A larger range (66-fold-609-fold) of added Mo concentrations resulting in 50% inhibition of yield (ED50) was found among soils than among plant species (2-fold-38-fold), which illustrated that the soils differed widely in the expression of Mo toxicity. Toxicity thresholds based on soil solution Mo narrowed the variation among soils compared to thresholds based on added Mo concentrations. We conclude that plant bioavailability of Mo in soil depends on Mo solubility, but this alone did not decrease the variability in observed toxicity enough to be used in risk assessment and that other soil properties influencing Mo toxicity to plants need to be considered.  相似文献   

5.
Zaldívar JM  Baraibar J 《Chemosphere》2011,82(11):1547-1555
There is the need to integrate existing toxicity data in a coherent framework for extending their domain of applicability as well as their extrapolation potential. This integration would also reduce time and cost-consuming aspects of these tests and reduce animal usage. In this work, based on data extracted from literature, we have assessed the advantages that a dynamic biology-toxicant fate coupled model for Daphnia magna could provide when assessing toxicity data, in particular, the possibility to obtain from short-term (acute) toxicity test long-term (chronic) toxicity values taking into account the inherent variability of D. magna populations and the multiple sources of data. The results show that this approach overcomes some of the limitations of existing toxicity tests and that the prediction errors are considerably reduced when compared with the factor from 2 to 5 obtained using acute-to-chronic ratios.  相似文献   

6.
The chronic toxicity of zinc oxide nanoparticles (ZnO-NP) to Folsomia candida was determined in natural soil. To unravel the contribution of particle size and free zinc to NP toxicity, non-nano ZnO and ZnCl2 were also tested. Zinc concentrations in pore water increased with increasing soil concentrations, with Freundlich sorption constants Kf of 61.7, 106 and 96.4 l/kg (n = 1.50, 1.34 and 0.42) for ZnO-NP, non-nano ZnO and ZnCl2 respectively. Survival of F. candida was not affected by ZnO-NP and non-nano ZnO at concentrations up to 6400 mg Zn/kg d.w. Reproduction was dose-dependently reduced with 28-d EC50s of 1964, 1591 and 298 mg Zn/kg d.w. for ZnO-NP, non-nano ZnO and ZnCl2, respectively. The difference in EC50s based on measured pore water concentrations was small (7.94-16.8 mg Zn/l). We conclude that zinc ions released from NP determine the observed toxic effects rather than ZnO particle size.  相似文献   

7.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

8.
Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)—‘VKG D’ and ‘VKG sweet’—in different soil matrices under natural climatic conditions. Dynamics of SFOs’ hydrocarbons (C10–C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons’ content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.  相似文献   

9.
The influence of soil properties on the bioavailability and toxicity of Co to barley (Hordeum vulgare L.) root elongation was investigated. Ten soils varying widely in soil properties were amended with seven doses of CoCl2. Soil properties greatly influenced the expression of Co toxicity. The effective concentration of added Co causing 50% inhibition (EC50) ranged from 45 to 863 mg kg−1, representing almost 20-fold variation among soils. Furthermore, we investigated Co toxicity in relation to Co concentrations and free Co2+ activity in soil solution. The EC50 values showed variation among soils of 17- and 29-fold, based on the Co concentration in soil solution and free Co2+ activity, respectively. Single regressions were carried out between Co toxicity threshold values and selected soil properties. Models obtained showed that soil effective cation exchange capacity (eCEC) and exchangeable calcium were the most consistent single predictors of the EC50 values based on soil added Co.  相似文献   

10.
Metal-contaminated soil, from the El Arteal mining district (SE Spain), was remediated with organic (6 % compost) and inorganic amendments (8 % marble sludge) to reduce the mobility of metals and to modify its potential environmental impact. Different measures of metal bioavailability (chemical analysis; survival, growth, reproduction and bioaccumulation in the earthworm Eisenia andrei), were tested in order to evaluate the efficacy of organic and inorganic amendments as immobilizing agents in reducing metal (bio)availability in the contaminated soil. The inorganic amendment reduced water and CaCl2-extractable concentrations of Cd, Pb, and Zn, while the organic amendment increased these concentrations compared to the untreated soil. The inorganic treatment did not significantly reduce toxicity for the earthworm E. andrei after 28 days exposure. The organic amendment however, made the metal-contaminated soil more toxic to the earthworms, with all earthworms dying in undiluted soil and completely inhibiting reproduction at concentrations higher than 25 %. This may be due to increased available metal concentrations and higher electrical conductivity in the compost-amended soil. No effects of organic and inorganic treatments on metal bioaccumulation in the earthworms were found and metal concentrations in the earthworms increased with increasing total soil concentrations.  相似文献   

11.
The toxicities of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to terrestrial plants alfalfa (Medicago sativa L.), Japanese millet (Echinochloa crusgalli L.), and perennial ryegrass (Lolium perenne L.) were determined in Sassafras sandy loam soil using seedling emergence, fresh shoot, and dry mass measurement endpoints. A 13-week weathering and aging of energetic materials in soils, which included wetting and drying cycles, and exposure to sunlight of individual soil treatments, was incorporated into the study design to better reflect the soil exposure conditions in the field than toxicity determinations in freshly amended soils. Definitive toxicity tests showed that dinitrotoluenes were more phytotoxic for all plant species in freshly amended treatments based on EC20 values for dry shoot ranging from 3 to 24mgkg(-1) compared with values for TNB or TNT ranging from 43 to 62mgkg(-1). Weathering and aging of energetic materials (EMs) in soil significantly decreased the toxicity of TNT, TNB or 2,6-DNT to Japanese millet or ryegrass based on seedling emergence, but significantly increased the toxicity of all four EMs to all three plant species based on shoot growth. Exposure of the three plant species to relatively low concentrations of the four compounds initially stimulated plant growth before the onset of inhibition at greater concentrations (hormesis).  相似文献   

12.
《Chemosphere》2010,78(11):1609-1613
Terrestrial avoidance behavior is proposed as a fast and cost-effective method for assessing effects of pesticides on earthworms. Tropical species however, have rarely been used in avoidance tests. Avoidance tests were performed with Perionyx excavatus, a tropical species, and Eisenia andrei as the standard species, using chlorpyrifos and carbofuran in artificial and natural soil. Earthworms were exposed to concentrations of 1–900 (chlorpyrifos) and 1–32 (carbofuran) mg a.i. kg−1 dry soil in a two-chamber system under tropical conditions (26 ± 2 °C, 48 h). No significant difference was found in the control tests comparing the two soils used, suggesting soil type did not affect the distribution of the worms. The results suggest a higher sensitivity of E. andrei, with EC50S for the effect on avoidance behavior for both pesticides being a factor of 2–3 lowers than for P. excavatus. Earthworm avoidance tests with local species should therefore be used with caution when applied as a tool for pesticide risk assessment in the tropics. Endpoints generated through avoidance tests in this study are shown to be less sensitive than reproduction and more sensitive than survival. This was further confirmed by literature data available. Earthworm avoidance tests therefore can only replace survival tests as an initial screening tool for risk assessment.  相似文献   

13.
Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions.  相似文献   

14.
A computational model to predict acute aquatic toxicity to the ciliate Tetrahymena pyriformis has been developed. A general prediction of toxicity can be based on three consecutive steps: 1. Identification of a potential reactive mechanism via structural alerts; 2. Confirmation and quantification of (bio)chemical reactivity; 3. Establishing a relationship between calculated reactivity and toxicity. The method described herein uses a combination of a reactive toxicity (RT) model, including computed kinetic rate constants for adduct formation (log k) via a Michael acceptor mechanism of action, and baseline toxicity (BT), modelled by hydrophobicity (octanol-water partition coefficient). The maximum of the RT and BT values defines acute toxicity for a particular compound. The reactive toxicity model is based on site-specific steric and quantum chemical ground state electronic properties. The performance of the model was examined in terms of predicting the toxicity of 106 potential Michael acceptor compounds covering several classes of compounds (aldehydes, ketones, esters, heterocycles). The advantages of the computational method are described. The method allows for a closer and more transparent mechanistic insight into the molecular initiating events of toxicological endpoints.  相似文献   

15.
Transfer of bioactive organic compounds from soil to plants might represent animal and human health risks. Sewage sludge and manure are potential sources for bioactive compounds such as human- and veterinary drugs. In the present study, uptake of the anti-diabetic compound, metformin, the antibiotic agent ciprofloxacin and the anti-coccidial narasin in carrot (Daucuscarota ssp. sativus cvs. Napoli) and barley (Hordeumvulgare) were investigated. The pharmaceuticals were selected in order to cover various chemical properties, in addition to their presence in relevant environmental matrixes. The root concentration factors (RCF) found in the present study were higher than the corresponding leaf concentration factors (LCF) for the three test pharmaceuticals. The uptake of metformin was higher compared with ciprofloxacin and narasin for all plant compartments analyzed. Metformin was studied more explicitly with regard to uptake and translocation in meadow fescue (Festucapratense), three other carrot cultivars (D.carota ssp. sativus cvs. Amager, Rothild and Nutri Red), wheat cereal (Triticumaestivum) and turnip rape seed (Brassicacampestris). Uptake of metformin in meadow fescue was comparable with uptake in the four carrot cultivars (RCF 2-10, LCF approximately 1.5), uptake in wheat cereals were comparable with barley cereals (seed concentration factors, SCF, 0.02-0.04) while the accumulation in turnip rape seeds was as high as 1.5. All three pharmaceuticals produced negative effects on growth and development of carrots when grown in soil concentration of 6-10 mg kg−1 dry weight.  相似文献   

16.
Lee WM  Kwak JI  An YJ 《Chemosphere》2012,86(5):491-499
Understanding some adverse effects of nanoparticles in edible crop plants is a matter of importance because nanoparticles are often released into soil environments. We investigated the phytotoxicity of silver nanoparticles (AgNPs) on the important crop plants, Phaseolus radiatus and Sorghum bicolor. The silver nanoparticles were selected for this study because of their OECD designation as a priority nanomaterial. The toxicity and bioavailability of AgNPs in the crop plant species P. radiatus and S. bicolor were evaluated in both agar and soil media. The seedling growth of test species was adversely affected by exposure to AgNPs. We found evidence of nanoparticle uptake by plants using electron microscopic studies. In the agar tests, P. radiatus and S. bicolor showed a concentration dependent-growth inhibition effect. Measurements of the growth rate of P. radiatus were not affected in the soil studies by impediment within the concentrations tested herein. Bioavailability of nanoparticles was reduced in the soil, and the dissolved silver ion effect also differed in the soil as compared to the agar. The properties of nanoparticles have been shown to change in soil, so this phenomenon has been attributed to the reduced toxicity of AgNPs to plants in soil medium. The application of nanoparticles in soil is a matter of great importance to elucidate the terrestrial toxicity of nanoparticles.  相似文献   

17.
Abstract

Acute and subacute 2,4‐D toxicity to carp (Cyprinus carpio L.) were investigated. Acute toxicity (LC‐ 50) was investigated in semi‐static test during a 24, 48, and 96‐ hours exposition. Subacute toxicity was investigated by exposing fish to different 2,4,‐D concentrations (150, 200, and 250 mg/L) for 14 days. Biochemical and morphological changes in certain organs and tissues were investigated.

LC‐ 50 values at 24 hours exposure was 310.0 mg/L, 295.0 mg/L for 48 hours, and 270.0 mg/L for 96 hours exposure.

Subacute toxicity tests show that 2,4‐D induce changes in the enzyme activities (AP, GOT, GPT) and morphological changes in the gills, liver and kidneys, but changes are of limited biological importance.  相似文献   

18.
The sole routine testing of the standard earthworm Eisenia fetida for the terrestrial risk assessment of pesticides has been under much debate since other soil invertebrates may be more sensitive than this standard test species. However, the very low availability of laboratory toxicity data for taxa other than E. fetida has greatly hampered sensitivity comparisons. In the present study, the relative tolerance (Trel) approach was used to enable comparing toxicity thresholds obtained from the US-EPA ECOTOX database, for main terrestrial taxonomic groups and pesticidal types of action (insecticides, fungicides, herbicides, and other) separately. Analyses confirmed previously reported lower and higher sensitivity of collembolans to fungicides and insecticides, respectively. However, various other discrepancies in susceptibility relative to E. fetida were encountered as indicated by species sensitivity distributions and/or calculated 95% confidence intervals of Trel values. Arachnids and isopods were found to be more sensitive to insecticides, and nematodes to fungicides, as compared to E. fetida. Implications of study findings for the terrestrial risk assessment of pesticides are discussed.  相似文献   

19.

The aim of this study was to determine the bioavailability of metals in field soils contaminated with chromated copper arsenate (CCA) mixtures. The uptake and elimination kinetics of chromium, copper, and arsenic were assessed in the earthworm Eisenia andrei exposed to soils from a gradient of CCA wood preservative contamination near Hartola, Finland. In soils contaminated with 1480–1590 mg Cr/kg dry soil, 642–791 mg Cu/kg dry soil, and 850–2810 mg Ag/kg dry soil, uptake and elimination kinetics patterns were similar for Cr and Cu. Both metals were rapidly taken up and rapidly excreted by Eisenia andrei with equilibrium reached within 1 day. The metalloid As, however, showed very slow uptake and elimination in the earthworms and body concentrations did not reach equilibrium within 21 days. Bioaccumulation factors (BAF) were low for Cu and Cr (< 0.1), but high for As at 0.54–1.8. The potential risk of CCA exposure for the terrestrial ecosystem therefore is mainly due to As.

  相似文献   

20.
The aim of this paper is to examine the statistical relevance of bird species on the endpoints of avian long–term toxicity studies (eggs laid, eggs set, eggs hatching, embryo survivor, 14-day old survivors and eggshell thickness). Data from 561 animals of three different species (Colinus virginianus, Anas platyrynchos and Coturnix coturnix japonica) tested with five different pesticides were analyzed in this study. The substances considered were: Thiamethoxam (EZ-3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro)amine), Thiacloprid ((Z)-3-(6-chloro-3-pyridylmethyl)-1,3-thiazolidin-2-ylidenecyanamide), Acetamiprid ((E)?N 1-[(6-chloro-3-pyridyl)methyl]-N 2-cyano-N 1-methylacetamidine), Phosmet (O,O-dimethyl S-phthalimidomethyl phosphorodithioate) and Dicofol (2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol). Several general lineal mixed models were conducted to evaluate the factors affecting variables used in long-term reproductive toxicity tests. Test significance was p < 0.01 in all models tested. Model R2 value was high (0.80) for all variables except for eggs laid (R2 = 0.42) for the three species studied. Tukey studentized range test showed significant differences among species and pesticides. For pre-hatching period the differences were significant for eggs laid and eggs set among species. C. japonica showed statistical differences for egg hatching. With respect to embryo survivor and 14 days old survival, significant different were found for C.virginianus and A. platyrynchos, respectively. These results indicate that the selected species have an influence in the endpoints to be used for risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号