首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of particulate emissions from pulverized coal fired steam generators is becoming a significant factor in the siting and public acceptability of large coal burning power plants. The particulate emission limit established by the EPA for new coal fired boilers is 0.03 lb/106 Btu (13 ng/J) Possibly more restrictive than this is the state of New Mexico's particulate regulation which calls for no more than 0.05 lb/106 Btu (22 ng/J) total, and no more than 0.02 lb/106 Btu (9 ng/J) less than 2 microns in diameter. This paper will evaluate the effect of these stringent limitations on the technical feasibility and economics of dry particulate removal. Electrostatic precipitators have been the dominant particulate collection device in the electric utility industry for many years because of their low capital and operating cost. However, increasingly stringent emission standards have led to substantially higher costs for precipitators. These costs have increased sufficiently for fabric filtration to become a competitive alternative in achieving cost effective control. This paper will compare the economics and performance of fabric filtration with respect to conventional electrostatic precipitators. The paper will also address the preliminary evaluation procedures that should be followed in order to select the appropriate device for new or existing coal-fired boilers.  相似文献   

2.
An ESP pilot plant study was done on emissions from a BOF process which is cyclic with very high and low gas volumes, temperature and grain loadings. Data collected were EP performance vs. gas velocity, and collection area. Also measured was particle size distribution, dust resi opacity at the EP outlet. From this data, a full size EP system was designed and installed. Recent performance tests indicate the data agrees well with the initial pilot plant study. Emissions have been reduced from 11 grs/scf (27.1 g/m3) to less than 0.033 grs/scf (81 mg/m3) and opacity to 20% or less.  相似文献   

3.
A new particle collection technique is analyzed and presented for its potential application in a high temperature, high pressure gas cleaning system. The technique is based on the collision and the aglomeration phenomena among the coal-ash particles when the cyclone is operated near the coal-ash fusion temperature. The percent increase of agglomeration rate is estimated by mathematical modeling for particles smaller than five microns in diameter. Particulate collection efficiency with or without agglomeration is presented. Experimental results in a high temperature cyclone are presented. The output dust loading varied from 0.025 to 5 grains per cubic foot (0.057–11 g/m3) as the input dust loading is increased from 4 to 35 grains per cubic foot (9.2–80g/m3) of gas flow.  相似文献   

4.
Indoor air pollution is closely related to children's health. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) transmitted through indoor PM2.5 and dust, along with carbonyl compounds and black carbon (BC) aerosol were analysed in five Hong Kong kindergartens. The results showed that 60% of the median PM2.5 levels (1.3 × 101 to 2.9 × 101 μg/m3 for indoor; 9.5 to 8.8 × 101 μg/m3 for outdoor) in the five kindergartens were higher than the guidelines set by the World Health Organization (2.5 × 101 μg/m3). Indoor PM2.5 mass concentrations were correlated with outdoor PM2.5 in four of the kindergartens. The PBDEs (0.10–0.64 ng/m3 in PM2.5; 0.30–2.0 × 102 ng/g in dust) and DP (0.05–0.10 ng/m3 in PM2.5; 1.3–8.7 ng/g in dust) were detected in 100% of the PM2.5 and dust samples. Fire retardant levels in the air were not correlated with the levels of dust in this study. The median BC concentrations varied by > 7-fold from 8.8 × 102 ng/m 3 to 6.7 × 103 ng/m 3 and cooking events might have caused BC concentrations to rise both indoors and outdoors. The total concentrations of 16 carbonyls ranged from 4.7 × 101 μg/m3 to 9.3 × 101 μg/m3 indoors and from 1.9 × 101 μg/m3 to 4.3 × 101 μg/m3 outdoors, whilst formaldehyde was the most abundant air carbonyl. Indoor carbonyl concentrations were correlated with outdoor carbonyls in three kindergartens. The health risk assessment showed that hazard indexes (HIs) HIs of non-cancer risks from PBDEs and DPs were all lower than 0.08, whilst non-cancer HIs of carbonyl compounds ranged from 0.77 to 1.85 indoors and from 0.50 to 0.97 outdoors. The human intake of PBDEs and DP through inhalation of PM2.5 accounted for 78% to 92% of the total intake. The cancer hazard quotients (HQs) of formaldehyde ranged from 4.5E  05 to 2.1E  04 indoors and from 1.9E  05 to 6.2E  05 outdoors. In general, the indoor air pollution in the five Hong Kong kindergartens might present adverse effects to children, although different schools showed distinct pollution levels, so indoor air quality might be improved through artificial measures. The data will be useful to developing a feasible management protocol for indoor environments.  相似文献   

5.
BackgroundEpidemiological studies have associated long-term exposure to ambient particulate matter with increased mortality from cardiovascular and respiratory disorders. Systemic inflammation is a plausible biological mechanism behind this association. However, it is unclear how the chemical composition of PM affects inflammatory responses.ObjectivesTo investigate the association between long-term exposure to elemental components of PM and the inflammatory blood markers high-sensitivity C-reactive protein (hsCRP) and fibrinogen as part of the European ESCAPE and TRANSPHORM multi-center projects.MethodsIn total, 21,558 hsCRP measurements and 17,428 fibrinogen measurements from cross-sections of five and four cohort studies were available, respectively. Residential long-term concentrations of particulate matter < 10 μm (PM10) and < 2.5 μm (PM2.5) in diameter and selected elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, zinc) were estimated based on land-use regression models. Associations between components and inflammatory markers were estimated using linear regression models for each cohort separately. Cohort-specific results were combined using random effects meta-analysis. As a sensitivity analysis the models were additionally adjusted for PM mass.ResultsA 5 ng/m3 increase in PM2.5 copper and a 500 ng/m3 increase in PM10 iron were associated with a 6.3% [0.7; 12.3%] and 3.6% [0.3; 7.1%] increase in hsCRP, respectively. These associations between components and fibrinogen were slightly weaker. A 10 ng/m3 increase in PM2.5 zinc was associated with a 1.2% [0.1; 2.4%] increase in fibrinogen; confidence intervals widened when additionally adjusting for PM2.5.ConclusionsLong-term exposure to transition metals within ambient particulate matter, originating from traffic and industry, may be related to chronic systemic inflammation providing a link to long-term health effects of particulate matter.  相似文献   

6.
The Ceilcote ionizing wet scrubber installed on a refractory brick kiln was evaluated with tests involving particulate mass emission, particle size distribution, and opacity. The overall efficiency was 93% with an average outlet opacity of 8% on a 1.68 m (5.5 ft) path length. The average particle cut diameter of the scrubber is 0.5 microns with a theoretical power input of 67 W/am3 (2.5 hp/1000 acfm). The theoretical power requirement for the ionizing wet scrubber was 41 W/am3 (1.54 hp/1000 acfm). A cooling tower supplying chilled water to the prescrubber required an additional 26 W/am2 (0.96 hp/1000 acfm) for a total system input of 67 W/am3 (2.5 hp/1000 acfm). It is recommended that the scrubber be considered where practical for the removal of fine particulate matter.  相似文献   

7.
Dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCHs) are widely detected in the environment, although they have been banned in China since 1980s. To better understand the route-specific daily uptake of the pesticides by humans, a total of 322 food, dust, and air samples were collected in Shanghai, China, during 2008–2011. The median concentrations were 0.2–126.6 and 0.03–1.6 ng/g wet weight for DDTs (DDT and its metabolites) and HCHs, respectively, in different types of foods. The values in dust (indoors and outdoors) were 5.7–29.8 and 1.3–5.4 ng/g, and 13.9 × 10 3 and 2.6 × 10 3 ng/m3 in air (gas + particle) for DDTs and HCHs, respectively. The daily uptake of a pesticide by humans was calculated via the pesticide intake multiplied by its uptake efficiency. The uptake efficiencies of DDTs and HCHs in food through human intestines were estimated using bioaccessibility measured via an in vitro method simulating the human gastrointestinal digestion process. The total daily uptakes of DDTs and HCHs through three routes (i.e., ingestion, inhalation, and dermal contact) were 79.4 and 4.9 ng/day, respectively, for children, and 131.1 and 8.0 ng/day, respectively, for adults. Ingestion via food and dust was the main route of human exposure to the pesticides, and the daily uptake of the pesticides via food consumption accounted for 95.0–99.2% of the total.  相似文献   

8.
Changes of phytoplankton density and their relation to physicochemical characteristics along the Nile River have been noted in the Cairo district between 1976 and 1982. Three major phytoplankton groups were found to dominate the river Nile: green algae, blue-green algae, and diatoms. Diatoms represent the most dominant group and comprised from 42% to 96% of the phytoplankton community during the investigated period. Blue-green algae comprised from 0.7% to 48% of total cell number. Green algae represent the low percentage group, which ranges from 0.2% to 41% of Nile water algae. High species diversity (H′) was detected in green algae (1.22) followed by diatoms (0.84); the lowest diversity was in blue-green algae (0.45). The density of total phytoplankton count fluctuated between 106 and 107 organism/L. The concentration of chlorophyll-a ranged from 5 to 37 mg/m3. Primary production rates in the Nile River ranged from 8.5 to 52 mg O2/m3h. Statistical analysis revealed significant positive correlations between chlorophyll-a content, and concentrations of phosphoruss and nitrate. Phytoplankton diversity, primary production, ammonia, and nitrite content revealed that there is no indication of pollution in the Nile.  相似文献   

9.
The Stockholm Convention on Persistent Organic Pollutants includes in its aims the minimisation of unintentional releases of polychlorinated dibenzo-dioxins and dibenzofurans (PCDD/PCDF) and dioxin like PCB (dl-PCB) to the environment. Development and implementation of policies to achieve this aim require accurate national inventories of releases of PCDD/PCDF/dl-PCB. To support this objective, the Conference of Parties established a process to review and update the UNEP Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases. An assessment of all emission inventories was that for many countries open burning of biomass and waste was identified as the major source of PCDD/PCDF releases. However, the experimental data underpinning the release estimates used were limited in number and, consequently, confidence in the accuracy of the emissions predictions was low. There has been significant progress in measurement technology since the last edition of the Toolkit in 2005. In this paper we reassess published emission factors for release of PCDD/PCDF and dl-PCB to land and air.In total, four types of biomass and 111 emission factors were assessed. It was found that there are no systematic differences in emission factors apparent between biomass types or fire classes. The data set is best described by a lognormal distribution. The geometric mean emission factors (EFs) for releases of PCDD/PCDF to air for the four biomass classes used in the Toolkit (sugarcane, cereal crops, forest and savannah/grass) are 1.6 μg TEQ (t fuel)−1, 0.49 μg TEQ (t fuel)−1, 1.0 μg TEQ (t fuel)−1 and 0.4 μg TEQ (t fuel)−1, respectively. Corresponding EFs for release of PCDD/PCDF to land are 3.0 ng TEQ (kg ash)−1, 1.1 ng TEQ (kg ash)−1, 1.1 ng TEQ (kg ash)−1 and 0.67 ng TEQ (kg ash)−1. There are now also sufficient published data available to evaluate EFs for dl-PCB release to air for sugarcane, forest and grass/savannah; these are 0.03 μg TEQ (t fuel)−1, 0.09 μg TEQ (t fuel)−1 and 0.01 μg TEQ (t fuel)−1, respectively. The average EF for dl-PCB release to land is 0.19 ng TEQ (kg ash)−1. Application of these EFs to national emissions of PCDD/PCDF for global estimates from open burning will lower previous estimates of PCDD/PCDF releases to air and to land by 85% and 90%, respectively. For some countries, the ranking of their major sources will be changed and open burning of biomass will become less significant than previously concluded.  相似文献   

10.
Two cold side electrostatic precipitators handling low sulfur eastern bituminous coal flyash were upgraded from 94% to 99.4% efficiency in order to meet a particulate compliance limit of 0.1 lb/MMBtu (43 ng/J).The comprehensive upgrading was the result of a 2 year research and testing program during which various aspects of flue gas conditioning, electrical energization, rapping, coal quality control, and gas distribution were independently tested on three similar precipitators. The ensuing upgrading program included the installation of hardware for maximum performance and reliability as well as flue gas conditioning and a fuel ash control program.A cost and reliability analysis of the upgrading program as compared with the installation of an additional series precipitator is included.  相似文献   

11.
A new automated version of the piezoelectric microbalance measures the mass concentration of airborne particles smaller than a preselected aerodynamic cutoff diameter. It is designed for near-real-time, unattended, round-the-clock measurements of nearly any aerosol environment inhabited by humans. The instrument uses an electrostatic precipitator to deposit particles with greater than 95% efficiency onto a piezoelectric quartz crystal sensor which is able to detect a deposit of 0.005 μg. The precipitator and sensor are nearly identical to those in the portable instrument reported previously. Measurements comparing within ± 15% with gravimetrically measured filter samples are documented for a wide variety of aerosols in the 50 μg/m3 to 5.5 mg/m3 range. The instrument measures particles from 10 μm down to 0.01 μm in diameter, including submicron combustion smokes and metallic fumes. The piezoelectric microbalance technique senses the mass concentration of the aerosol, rather than light scattering properties as is done by photometers and nephelometers. The piezobalance, with 1 L/min sample flow, is more sensitive than any other mass-sensing instrument, making it especially suited for low concentration indoor measurements, even below 50 μg/m3. An automatic piezobalance recently measured respirable aerosol mass concentrations in several offices. Each measurement was the average concentration during a 30-min period. The 24-h/day measurements continued for several days. Especially interesting is the diurnal pattern, both for offices with and without smokers. The effect of a single nearby smoker was clearly illustrated when the smoker was absent one day in the middle of a week. Normal daytime peak concentrations in that office reached 80–110 μg/m3 with a smoker present, but only 50–60 μg/m3 when the smoker was absent. Curious smokers who briefly stopped byt o see the instrument caused single half-hour averages to triple, to values as high as 294 μg/m3 in one office.  相似文献   

12.
The environmental consequence of meeting the planet’s energy requirements has shown that biological degradation of organic constituent from wastewater does not only produces biogas. It also produces flammable methane that has 21 times more global warming potential or greenhouse effect than carbon dioxide. This becomes a loss of potential renewable energy when it is flared. This study investigates recoverable energy from cassava wastewater and effect of unrecovered onsite (not from treatment plant) wastewater energy. Sludge from both onsite untreated and offsite treated wastewater from a cassava processing station in a sub urban community of Nigeria was analyzed. The result shows that the offsite treatment has a methane potential of 27.428 m3/day compared to the onsite methane emission potential with 17.807 m3/day. The onsite 17.807 m3/day of methane is equivalent to 0.126 kgCH4/year of emitted methane base on industrial procedure standards by the IPCC (2006) guidelines for national greenhouse gas inventories. An additional 54.03% of methane will be recovered if the onsite emissions were to be captured . At an emission efficiency of 0.025 kgCH4/kg COD, the untreated wastewater indicates a potential contribution to the greenhouse effect. A mathematical model analysis was presented for ease in determining the amount of methane emitted from the untreated wastewater. This study support suggested methodologies and previous work comparing anaerobic offsite methane potential and untreated wastewater methane emission potentials along with its greenhouse effects.  相似文献   

13.
A passive sampling device based on the principle of diffusion has been developed for the determination of formaldehyde in ambient air. The sampler consists of a capped glass tube (with approximate dimensions of 2.4 × 9 cm) containing a glass-fiber filter treated with NaHSO3. In the field, the device collects a sample by being uncapped for a specified sampling time. After being recapped and returned to the laboratory, the filter is analyzed by the chromotropic acid (CTA) method. Laboratory validation studies were conducted by exposing the sampling devices for 1 week to dry formaldehyde gas generated by passing trioxane vapor over an acid catalyst bed. In these tests, formaldehyde concentrations ranged from 0.05 to 0.80 mL/m3. Reproducibility was excellent, with relative standard deviations averaging 5.4% for five constant concentrations. The lower detection limit was determined to be 3.6 mL/m3 h. In an occupational environment an 8-h sample would be sufficient to detect compliance with the OSHA permissible exposure limit of 3 mL/m3; in a residential environment a 1-week sample would allow detection of 0.025 mL/m3 for indoor air quality audits.  相似文献   

14.
Microalgae has been considered potential biofuel source from the last decade owing to its versatile perspectives such as excellent capability of CO2 capture and sequestration, water treatment, prolific growth rate and enormous energy content. Thus, energy research on microalgae is being harnessed to mitigate CO2 and meet future energy demands. This study investigated the bioenergy potential of native blue-green microalgae consortium as initial energy research on microalgae in Brunei Darussalam. The local species of microalgae were assembled from rainwater drains, the species were identified as Stigonematales sp. and physical properties were characterised. Sundried biomass with moisture content ranging from 6.5% to 7.37% was measured to be used to determine the net and gross calorific value and they were 7.98 MJ/kg-8.57 MJ/kg and 8.70 MJ/kg-9.45 MJ/kg, respectively. Besides that, the hydrogen content, ash content, volatile matter, and bulk density were also experimented and they were 2.56%-3.15%, 43.6%-36.71%, 57–38%-63.29% and 661.2 kg/m3-673.07 kg/m3, respectively. Apart from experimental values, other physical bioenergy parameters were simulated and they were biomass characteristic index 61,822.29 kg/m3-62,341.3 kg/m3, energy density 5.27 GJ/m3-5.76G J/m3 and fuel value index 86.19–88.54. With these experimental results, microalgae manifested itself a potential source of biofuel feedstock for heat and electricity generation, a key tool to bring down the escalated atmospheric greenhouse gases and an alternation for fossil fuel.  相似文献   

15.
As a follow-up to a pilot study, a full scale investigation of applying high velocity fabric filtration to coal-fired boiler fly ash control was conducted. Two filter systems were separately applied to two 60,000 lb/h coal-fired boilers. Performance evaluations conducted over the course of a year included total mass removal efficiency and fractional efficiencies. One filtration system employed Teflon felt as the filter media while the second system employed Gore-Tex, a Polytetrofluorethylene (PTFE) laminate on PTFE woven backing. During the course of the year, a limited number of glass felt and woven glass bags were introduced into the house containing Gore-Tex. As a separate option, the second system was outfitted entirely with woven glass bags. Preliminary results indicate acceptable performance at air-to-cloth ratio of 6 to 1. Future plans call for utilizing one of the baghouse systems for SO2 removal.  相似文献   

16.
The concentrations and vertical distribution of 239,240Pu, 241Am and 137Cs in the bottom sediments and water samples of Lake Päijänne were investigated. This lake is important, since the Päijänne area received a significant deposition from the Chernobyl fallout. Furthermore Lake Päijänne is the raw water source for the Helsinki metropolitan area. In addition no previous data on the distribution of plutonium and americium in the sediment profiles of Lake Päijänne exist. Only data covering the surface layer (0–1 cm) of the sediments are previously available. In the sediments the average total activities were 45 ± 15 Bq/m2 and 20 ± 7 Bq/m2 for 239,240Pu and 241Am, respectively. The average 241Am/239,240Pu ratio was 0.45 ± 0.14. The 241Am/239,240Pu ratio is lowest in the surface layer of the sediments and increases as a function of depth. The 238Pu/239,240Pu ratio of the sediment samples varied between 0.012 ± 0.025 and 0.162 ± 0.079, decreasing as a function of depth. The average activity in water was 4.9 ± 0.9 mBq/m3 and 4.1 ± 0.2 mBq/m3 for 239,240Pu and 241Am, respectively. The 241Am/239,240Pu ratio of water samples was 0.82 ± 0.17. 239,240Pu originating from the Chernobyl fallout calculated from the average total activities covers approximately 1.95 ± 0.01% of the total 239,240Pu activity in the bottom sediments. The average total 137Cs activity of sediment profiles was 100 ± 15 kBq/m2 and 19.3 ± 1.4 Bq/m3 in water samples.  相似文献   

17.
Samples of respirable particulate matter collected during a personal monitoring study in Topeka, KS, were analyzed for iron, aluminum, and lead content. The sampling protocol and instrumentation are described in detail. Lead indoor concentrations (median = 79 ng/m3) were found to be less than both personal (median = 112 ng/m3) and outdoor lead concentrations (median = 106 ng/m3). The indoor, outdoor, and personal levels of iron and aluminum were not significantly different. In addition, it was determined that outdoor respirable particulate mass does not correlate well with the personal or indoor metal concentrations, and that the amount of time spent in motor vehicles is a relatively good indicator of lead exposures. The relationships between indoor, outdoor, and personal lead are discussed in greater detail, with references to supporting evidence from other studies.  相似文献   

18.
Alkali ash material (AAM) concrete is a unique material that is sustainable and cost-effective because it utilises waste fly ash, and has properties superior to other concrete products. The AAM concrete described here is produced from the addition of inexpensive chemicals to fly ash. AAM can be used to create a wide range of materials including high performance concrete (HPC-AAM) and lightweight (LW-AAM). The high performance AAM provides rapid strength gain along with high ultimate strengths of more than 110 MPa (16000 psi). LW-AAM can produce materials with densities ranging from 1200 to 2200 kg/m3 and compressive strengths from 2 (290 psi) to 65 MPa (9500 psi). Both HPC-AAM and LW-AAM have far better environmental resistance than Portland cement concrete, resisting attack from sulphuric acid (H2SO4), hydrochloric acid (HCl) and organic acids. AAMs resists freeze–thaw attack and high abrasion, possesses low chloride permeability and does not exhibit alkali silica reactivity.  相似文献   

19.
Exposure to ambient particulate matter and elevated blood pressure are risk factors for cardiovascular morbidity and mortality. Microvascular changes might be an important pathway in explaining the association between air pollution and blood pressure. The objective of the study was to evaluate the role of the retinal microcirculation in the association between black carbon (BC) exposure and blood pressure.We estimated subchronic BC exposure based on 1-week personal measurements (μ-Aethalometer, AethLabs) in 55 healthy nurses. Blood pressure and retinal microvasculature were measured on four different days (range: 2–4) during this week.Subchronic BC exposure averaged (± SD) 1334 ± 631 ng/m3 and ranged from 338 ng/m3 to 3889 ng/m3. An increased exposure of 631 ng/m3 BC was associated with a 2.77 mm Hg (95% CI: 0.39 to 5.15, p = 0.027) increase in systolic blood pressure, a 2.35 mm Hg (95% CI: 0.52 to 4.19, p = 0.016) increase in diastolic blood pressure and with 5.65 μm (95% CI: 1.33 to 9.96, p = 0.014) increase in central retinal venular equivalent. Mediation analysis failed to reveal an effect of retinal microvasculature in the association between blood pressure and subchronic BC exposure.In conclusion, we found a positive association between blood pressure and subchronic black carbon exposure in healthy adults. This finding adds evidence to the association between black carbon exposure and cardiovascular health effects, with elevated blood pressure as a plausible intermediate effector. Our results suggest that the changes in a person's blood pressure as a result of subchronic black carbon exposure operate independently of the retinal microcirculation.  相似文献   

20.
ObjectivesTo examine associations between short/medium-term variations in black smoke air pollution and mortality in the population of Glasgow and the adjacent towns of Renfrew and Paisley over a 25-year period at different time lags (0–30 days).MethodsGeneralised linear (Poisson) models were used to investigate the relationship between lagged black smoke concentrations and daily mortality, with allowance for confounding by cold temperature, between 1974 and 1998.ResultsWhen a range of lag periods were investigated significant associations were noted between temperature-adjusted black smoke exposure and all-cause mortality at lag periods of 13–18 and 19–24 days, and respiratory mortality at lag periods of 1–6, 7–12, and 13–18 days. Significant associations between cardiovascular mortality and temperature-adjusted black smoke were not observed. After adjusting for the effects of temperature a 10 μg m 3 increase in black smoke concentration on a given day was associated with a 0.9% [95% Confidence Interval (CI): 0.3–1.5%] increase in all cause mortality and a 3.1% [95% CI: 1.4–4.9%] increase in respiratory mortality over the ensuing 30-day period. In contrast for a 10 μg m 3 increase in black smoke concentration over 0–3 day lag period, the temperature adjusted exposure mortality associations were substantially lower (0.2% [95% CI: − 0.0–0.4%] and 0.3% [95% CI: − 0.2–0.8%] increases for all-cause and respiratory mortality respectively).ConclusionsThis study has provided evidence of association between black smoke exposure and mortality at longer lag periods than have been investigated in the majority of time series analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号