首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Vehicular traffic contributes significantly to the aerosol number concentrations at the local scale by emitting primary soot particles and forming secondary nucleated nanoparticles. Because of their potential health effects, more attention is paid to the traffic induced aerosol number distributions.The aim of this work is to explain the phenomenology leading to the formation and the evolution of the aerosol number distributions in the vicinity of a vehicle exhaust using numerical modelling. The emissions are representative of those of a light-duty diesel truck without a diesel particle filter. The atmospheric flow is modelled with a computational fluid dynamics (CFD) code to describe the dispersion of pollutants at the local scale. The CFD code, coupled to a modal aerosol model (MAM) describing the aerosol dynamics, is used to model the tailpipe plume of a vehicle with emissions corresponding to urban driving conditions. On the basis of available measurements in Schauer et al. (1999), three surrogate species are chosen to treat the semi-volatile organic compounds in the emissions.The model simulates the formation of the aerosol distribution in the exhaust plume of a vehicle as follows. After emission to the atmosphere, particles are formed by nucleation of sulphuric acid and water vapour depending strongly on the thermodynamic state of the atmosphere and on the dilution conditions. The semi-volatile organic compounds are critical for the rapid growth of nanoparticles through condensation. The semi-volatile organic compounds are also important for the evolution of primary soot particles and can contribute substantially to their chemical composition.The most influential parameters for particle formation are the sulphur fuel content, the semi-volatile organic emissions and also the mass and initial diameter of the soot particles emitted. The model is able to take into account the complex competition between nucleation, condensation and dilution, as well as the interactions among the different aerosol modes. This type of model is a useful tool to better understand the dynamics leading to the formation of traffic induced aerosol distributions. However, some key issues such as the turbulence in the exhaust plume and in the wake of the car, the magnitude and chemical composition of semi-volatile organic emissions and the possible nucleation of organic species need to be investigated further to improve our understanding of ultrafine particle formation.  相似文献   

2.
Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H2SO4–H2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads.Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp∼50 nm) at variable operating conditions. Soot mode number concentrations reached up to 1013 m−3 depending on operating conditions and mixing.For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H2SO4(g). The highest simulated nucleation rates were about 0.05–0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle (Dp⩽15 nm) concentrations (>1013 m−3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h−1) and high engine rotational speed (>3800 revolutions per minute (rpm)).Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H2SO4–H2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H2SO4–H2O–octane–gasoil aerosol resulted in sufficient growth of nucleation particles.  相似文献   

3.
Exhaust gas particle and ion size distributions were measured from an off-road diesel engine complying with the European Stage IIIB emission standard. The measurements were performed at idling and low load conditions on an engine dynamometer. Nucleation-mode particles dominated the diesel exhaust particle number emissions at idle load. The nonvolatile nucleation-mode geometric mean diameter was detected at 10 nm or below. The nonvolatile nucleation-mode charge state implied that it has evolved through a highly ionizing environment before emission from the engine. The determined charging probabilities were 10.0 ± 2.2% for negative and 8.0 ± 2.0% for positive polarity particles. The nonvolatile nucleation particle concentration and size was also shown to be dependent on the lubricant oil composition. The particle emissions were efficiently controlled with a partial filter or with partial filter + selective catalytic reduction (SCR) combination. The particle number removal efficiencies of the aftertreatment systems were over 95% for wet total particle number (>3nm) and over 85% for dry particle total number. Nevertheless, the aftertreatment systems’ efficiencies were around 50% for the soot-mode particles. The low-load nonvolatile nucleation particle emissions were also dependent on the engine load, speed, and fuel injection pressure. The low load particle number emissions followed the soot-core trade-off, similar to medium or high operating loads.
Implications:Idling and low-load diesel engine exhaust emissions affect harmfully the ambient air quality. The low-load particle number emissions are here shown to peak in the 10-nm size range for a modern off-road engine. The particles are electrically charged and nonvolatile and they originate from the combustion process. Tailpipe particle control by open channel filter can remove more than 85% of the nonvolatile 10-nm particles and about 50% of the soot-mode particles, while the fuel injection pressure increase can lead to particle number increase. The study provides a new viewpoint for low-load particle emissions and control.  相似文献   

4.
Uncertainties still remain in the size and number emission of nucleation and soot mode particles from diesel vehicles and understanding of the nucleation process under different ambient conditions. Particle emission measurements were carried out with a EURO-3 certified European diesel passenger car running on low (<10 ppm S) and high (310 ppm S) sulfur fuel. A newly developed in situ diluter which sampled exhaust continuously from the tailpipe and diluted in two steps by a factor of 500–6000 was employed to study nucleation particle formation under well-controlled temperature and humidity conditions. Particle emission measurements were also carried out with a mobile laboratory chasing the exhaust plume of the same vehicle in summer (19–25 °C) and winter (9 °C), with no significant difference of the nucleation or soot mode particle emission found. The particle size distributions compared well with those measured in the laboratory with the same vehicle under identical driving conditions. Simple nucleation and coagulation calculations were compared with the atmospheric and laboratory measurements. It was shown that the primary dilution step had the largest impact on the nucleation mode formation, while the model overpredicted the influence of temperature and humidity. No nucleation mode particles were observed running the diesel vehicle on low (<10 ppm S) fuel.  相似文献   

5.
A new setup has been developed and built to measure number size distributions of exhaust particles and thermodynamic parameters under real traffic conditions. Measurements have been performed using a diesel and a gasoline passenger car driving with different speeds and engine conditions. Significant number of nucleation mode particles was found only during high load conditions, i.e. high car and engine speeds behind the diesel car. The number concentration of soot mode particles varied within a factor of two for different engine conditions while the concentration of nucleation mode particles varied up to two orders of magnitude. The results show that roadside measurements are still quite different from those behind the tailpipe. Beside dilution transformation processes within the first meter behind the tailpipe also play an important role, such as nucleation and growth. Emission factors were calculated and compared with those obtained by other studies. Emission factors for particles larger than 25 nm (primary emissions) varied within 1.1 × 1014 km?1 and 2.7 × 1014 km?1 for the diesel car and between 0.6 × 1012 km?1 and 3.5 × 1012 km?1 for the gasoline car. The advantage of these measurements is the exhaust dilution under atmospheric conditions and the size-resolved measurement technique to divide into primary emitted and secondary formed particles.  相似文献   

6.
Over the past several years, numerous studies have linked ambient concentrations of particulate matter (PM) to adverse health effects, and more recent studies have identified PM size and surface area as important factors in determining the health effects of PM. This study contributes to a better understanding of the evolution of particle size distributions in exhaust plumes with unconfined dilution by ambient air. It combines computational fluid dynamics (CFD) with an aerosol dynamics model to examine the effects of different streamlines in an exhaust plume, ambient particle size distributions, and vehicle and wind speed on the particle size distribution in an exhaust plume. CFD was used to calculate the flow field and gas mixing for unconfined dilution of a vehicle exhaust plume, and the calculated dilution ratios were then used as input to the aerosol dynamics simulation. The results of the study show that vehicle speed affected the particle size distribution of an exhaust plume because increasing vehicle speed caused more rapid dilution and inhibited coagulation. Ambient particle size distributions had an effect on the smaller sized particles (approximately 10 nm range under some conditions) and larger sized particles (>2 microm) of the particle size distribution. The ambient air particle size distribution affects the larger sizes of the exhaust plume because vehicle exhaust typically contains few particles larger than 2 microm. Finally, the location of a streamline in the exhaust plume had little effect on the particle size distribution; the particle size distribution along any streamline at a distance x differed by less than 5% from the particle size distributions along any other streamline at distance x.  相似文献   

7.

Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  相似文献   

8.
A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was approximately 0.1 microm to 1 microm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravimetric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor's response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

9.
The size and chemical composition of individual diesel exhaust particles were measured in order to determine unique mass spectral signatures that can be used to identify particle sources in future ambient studies. The exhaust emissions from seven in-use heavy-duty diesel vehicles (HDDVs) operating on a chassis dynamometer were passed through a dilution tunnel and residence chamber and analyzed in real time by aerosol time-of-flight mass spectrometry (ATOFMS). Seven distinct particle types describe the majority of particles emitted by HDDVs and were emitted by all seven vehicles. The dominant chemical types originated from unburned lubricant oil, and the contributions of the various types varied with particle size and driving conditions. A comparison of light-duty vehicle (LDV) exhaust particles with the HDDV signatures provide insight into the challenges associated with developing an accurate source apportionment technique and possible ways of how they may be overcome.  相似文献   

10.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

11.
Abstract

A real-time monitoring methodology to determine diesel fine particles in diesel emissions has been evaluated. The range of particle size captured by the monitor was ~0.1 μm to 1 μm. DustTrak real-time monitors were connected to the dilution tunnel of the vehicle exhaust to measure the emissions during the vehicle tests under both dynamic and steady-state driving conditions, and concentration data were recorded every 5 sec. Test variation of the real-time monitoring among different test days was similar to that measured by traditional filter-based gravi-metric method, whereas the repeatability of the monitor data within the same-day tests was better than that of gravimetric method. Correlations between the two methods were established for different fuels tested on a single light duty vehicle. When the emissions from the reference fuel was used to convert the monitor’s response to diesel fuels, the levels determined by the real-time monitor were consistent with those measured by gravimetric method among different fuels tested. Use of the real-time monitor could provide information on the levels of fine particles that is more relevant to the public health than the total particles.  相似文献   

12.
Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer, and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However, the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction.
Implications:The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.  相似文献   

13.
The distributions of nanoparticles (below 300 nm in diameter) change rapidly after emission from the tail pipe of a moving vehicle due to the influence of transformation processes. Information on this time scale is important for modelling of nanoparticle dispersion but is unknown because the sampling frequencies of available instruments are unable to capture these rapid processes. In this study, a fast response differential mobility spectrometer (Cambustion Instruments DMS500), originally designed to measure particle number distributions (PNDs) and concentrations in engine exhaust emissions, was deployed to measure particles in the 5–1000 nm size range at a sampling frequency of 10 Hz. This article presents results of two separate studies; one, measurements along the roadside in a Cambridge (UK) street canyon and, two, measurements at a fixed position (20 cm above road level), centrally, in the wake of a single moving diesel-engined car. The aims of the first measurements were to test the suitability and recommend optimum operating conditions of the DMS500 for ambient measurements. The aim of the second study was to investigate the time scale over which competing influences of dilution and transformation processes (nucleation, condensation and coagulation) affect the PNDs in the wake of a moving car. Results suggested that the effect of transformation processes was nearly complete within about 1 s after emission due to rapid dilution in the vehicle wake. Furthermore, roadside measurements in a street canyon showed that the time for traffic emissions to reach the roadside in calm wind conditions was about 45 ± 6 s. These observations suggest the hypothesis that the effects of transformation processes are generally complete by the time particles are observed at roadside and the total particle numbers can then be assumed as conserved. A corollary of this hypothesis is that complex transformation processes can be ignored when modelling the behaviour of nanoparticles in street canyons once the very near-exhaust processes are complete.  相似文献   

14.
Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point approximately 11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

15.
Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

16.
ABSTRACT

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point ~11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.  相似文献   

17.
Abstract

Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

18.
NOx, nitrate and sulphate emissions from a typical European passenger car diesel engine have been measured testing eight different fuels under five steady operating conditions (reproducing modes of the European transient urban/extraurban certification cycle). It is confirmed that nitrogen species compete with sulphur compounds to be adsorbed by diesel particulate matter (DPM) before being emitted into the atmosphere. This competition is found to increase with engine load, and is explained on the basis of the different specific surface and adsorption capacity of soot particles under different operating modes. When a high specific surface is available, as occurs in low load modes, both nitrates and sulphates are adsorbed by soot particles. On the contrary when a small surface is accessible, like in high load modes, sulphates are selectively adsorbed. This is specially important since sulphates are responsible for hydrocarbon retention in DPM due to the scrubbing effect.  相似文献   

19.
The behavior of nanoparticles (NPs) in the roadside atmosphere has not been clarified because it involves unstable volatile components. It was thought that the number concentration (NC) and NP size distribution change due to variations in traffic conditions (e.g., traffic volume [TV], velocity, acceleration, etc.) near the intersection, but the SMPS (Scanning Mobility Particle Sizer) lacks the temporal resolution required for rapid, transient measurements. Using a fast-response aerosol spectrometer capable of providing near-instantaneous particle NC measurements in real time, the behavior of NPs during one signal cycle became clear, and it was understood that the effect of condensation/evaporation processes is important, in addition to coagulation. As for the relation of the NC in proportion to the TV, this did not show a constant line but rather a hysteresis curve during the signal cycle, because the gas-particle equilibrium state at the roadside atmosphere was variable. Using two points of simultaneous measurement and on-board measurement, the behavior of NPs could be confirmed in response to the characteristics of automotive exhaust, which varied due to the on-road driving state, engine conditions, vehicle position, or traffic light timing, at the intersection. The on-board measurement of NP size distribution in the exhaust plume from a diesel vehicle was carried out as a reference for direct particle emissions, compared with the roadside NPs. The coagulation/deposition model simulation using the direct particle emissions underestimated the NCs compared with the observed values. The gas-particle equilibrium model could explain the underestimated portion caused by the condensation of ambient VOC (Volatile Organic Compounds) onto the particles. If this hypothesis is correct, the condensable VOC amount in the roadside atmosphere is suggested to be very large.  相似文献   

20.
A factor analytic model has been applied to resolve and apportion particles based on submicron particle size distributions downwind of a United States-Canada bridge in Buffalo, NY. The sites chosen for this study were located at gradually increasing distances downwind of the bridge complex. Seven independent factors were resolved, including four factors that were common to all of the five sites considered. The common factors were generally characterized by the existence of two or more number and surface area modes. The seven factors resolved were identified as follows: fresh tail-pipe diesel exhaust, local/street diesel traffic, aged/evolved diesel particles, spark-ignition gasoline emissions, background urban emissions, heavy-duty diesel agglomerates, and secondary/transported material. Submicron (<0.5 microm) and ultrafine (<0.1 microm) particle emissions downwind of the bridge were dominated by commercial diesel truck emissions. Thus, this study obtained size distinction between fresh versus aged vehicle exhaust and spark-ignition versus diesel emissions based on the measured high time-resolution particle number concentrations. Because this study mainly used particles <300 nm in diameter, some sources that would usually exhibit number modes >100 nm were not resolved. Also, the resolved profiles suggested that the major number mode for fresh tailpipe diesel exhaust might exist below the detection limit of the spectrometer used. The average particle number contributions from the resolved factors were highest closest to the bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号