首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
This paper deals with process identification and model development for the case of a porous reference material leaching under certain hydrodynamic conditions. Four different dynamic leaching tests have been applied in order to take into account different types of solid/liquid contact conditions corresponding to various real leaching scenarios: monolithic and granular material with sequential eluate renewal, and granular material and continuously renewed eluate with different hydrodynamic conditions (dispersion, residence time). A coupled chemical-mass transfer model has been developed to describe the leaching behaviour under all experimental conditions. Diffusion has been considered as the mass transport mechanism inside the saturated porous material and dispersive convection as that in the leachate. Two specific phenomena have been identified and considered in the model: (i) the early surface dissolution of the material which results in high Ca concentration and (ii) the late weak dissolution of Na and K giving rise to a long-term residual release. The intrinsic material parameters such as the initial concentrations in the pore water and solid phases were determined by applying equilibrium leaching tests and geochemical modelling. Diffusion coefficients for different elements and the late solubility of alkalines have been found to reach the same values in the four tests. The estimated values of the surface dissolution kinetic constant have shown a dependence on leachate hydrodynamics when the thickness of the degraded layer is nearly the same in the four tests (intrinsic parameter of the material). The competition between the four main dynamic processes, i.e. diffusion, convection, late dissolution, and surface dissolution, has been emphasized and compared in the four leaching tests: the hydrodynamic dispersion and the residence time had no effect on the leaching behaviour of alkalines, which is controlled by diffusion, whereas the behaviour of calcium (a major element of the material) was strongly influenced. This has significant effects on eluate pH values and on the concentration of Pb (the monitored pollutant). The model was then applied to simulate a landfill scenario in the case of a stabilized/solidified incinerator residue containing heavy metals and chloride. A high rain infiltration level and the use of small blocs are favourable conditions for enhanced pollutant release.  相似文献   

2.
Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (~53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.  相似文献   

3.
The binding efficiency of chitosan samples for Ag(+), Cd(2+), Cu(2+), Pb(2+) and Zn(2+) has been evaluated in order to consider their application to remediate metal contaminated soil and water. The sorption behaviour of metal ions was assessed using a batch technique at different contact time and initial metal concentration with different background electrolytes. The kinetics followed a pseudo-second-order model, while the equilibrium data correlated well with the Freundlich and Langmuir isotherm models. For example, the maximum sorption capacity (Q) for chitosan was estimated as 1.93 mmol/g for Ag(+), 1.61 mmol/g for Cu(2+), 0.94 mmol/g for Zn(2+), 0.72 mmol/g for Cd(2+) and 0.64 mmol/g for Pb(2+). Covalent interaction between metal ions and functional groups (amino and hydroxyl) of the chitosans was the main binding mechanism. Ion exchange is not an important process. Chitosan and cross-linked chitosans were able to bind metal ions in the presence of K(+), Cl(-) and NO(3)(-). The nature of Cl(-) and NO(3)(-) ions did not affect Zn(2+) binding by the chitosans. Even at 11x dilution, the chitosans were able to retain metal ions on their surfaces.  相似文献   

4.
The effect of market effluent from the Oja-titun market in Ile-Ife, Nigeria on the chemical quality of the Opa Reservoir located 3.5 km downstream was investigated between February and November 2000. Water samples were collected in February, May, August and November from 16 sites, four along each of the market drainage channels (MDC), market stream, tributary stream and the Opa River and Reservoir. The peak level of each variable-biochemical oxygen demand, temperature, total alkalinity, Na(+), K(+), Ca(2+), Mg(2+), PO(4)(3+), SO(4)(2+), Cl(-), NO(3)(-), Pb and Zn-occurred at the MDC, and decreased significantly downstream, except pH, conductivity and dissolved oxygen, which increased. Seasonal fluctuation in most variables was pronounced. Generally, there were high values in the early dry and dry seasons and low values in the rainy and early rainy seasons. Comparison of the reservoir water with international limitation standards for drinking water supply showed that the quality of the reservoir water was very low and that treatment required to achieve minimum limitation standards for drinking water would be both intensive and expensive. The study concluded that the stream borne effluent from the market impacts significantly on the chemical quality of the reservoir water although other tributaries within the Reservoir's catchment are other possible sources of pollutants in the reservoir.  相似文献   

5.
The leaching characteristics of air pollution control (APC) residues collected in Shanghai, China, were compared by performing three compliance leaching tests. These were the standard Chinese method for determining the leaching toxicity of solid waste (GB 5086.1-1997), the USEPA's Toxicity Characteristic Leaching Procedure (TCLP), and the new European shake test (EN 12457-3). In particular, behaviors of raw samples and samples that had been subjected to natural aging were compared. Both the leaching tests and natural aging substantially affected the leaching results concerning the APC residue samples. Most importantly, EN and GB tests classified the raw APC residues as hazardous, but the residues passed the TCLP test as nonhazardous. After it had been naturally aged for 720 h, however, the aged sample was classified as hazardous by the TCLP and EN tests, but as nonhazardous by the GB test. Metals that are thought to have been immobilized by carbonation were released at pH 6.3. Model calculations based on the geochemical thermodynamic equilibrium model MINTEQA2 revealed that the formation of metal carbonates did not correspond to the noted change in the leaching behaviors in the three leaching tests. Rather, the partial neutralization of alkaline ash by dissolved CO2 changing the final pH of the leachate dominated the leaching characteristics. The leaching results showed a change in leachate pH.  相似文献   

6.
We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce NO3-, NH4+, and total phosphorus (TP) leaching, with Osmocoate 14-14-14, a conventional commercial slow release fertilizer (SRF) and an unamended control in three different soil textures in a greenhouse column study. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF 1) to more moderately bound (MBF 2) and more tightly bound compounds (MBF 3) mixed with Al(SO4)3H2O and/or Fe2(SO4)3 and with high ionic exchange compounds starch, chitosan and lignin. When N and P are released, the chemicals containing these nutrients in the MBF bind N and P to a Al(SO4)3H2O and/or Fe2(SO4)3 starch-chitosan-lignin matrix. One milligram (8000 spores) of Glomus intradices was added to all formulations to enhance nutrient uptake. In all three soil textures the SRF leachate contained a higher amount of NH4+, NO3- and TP than leachate from all other fertilizers. In all three soils there were no consistent differences in the amount of NH4+, NO3- and TP in the MBF leachates compared to the control leachate. Plants growing in soils receiving SRF had greater shoot, root and total biomass than all MBFs regardless of Al(SO4)3H2O or Fe2(SO4)3 additions. Arbuscular mycorrhizal infection in plant roots did not consistently differ among plants growing in soil receiving SRF, MBFs and control treatments. Although the MBFs resulted in less plant growth in this experiment they may be applied to soils growing plants in areas that are at high risk for nutrient leaching to surface waters.  相似文献   

7.
A number of agricultural and engineering uses for fixated flue gas desulfurization (FGD) material exist; however, the potential for leaching of hazardous elements has limited widespread application and the processes controlling the leaching of this material are poorly understood. In this study, a flow-through rotating-disk system was applied to elucidate the relative importance of bulk diffusion, pore diffusion, and surface chemical reaction in controlling the leaching of fixated FGD material under pH conditions ranging from 2.2 to 6.8. Changing the hydrodynamics in the rotating disk system did not affect the leaching kinetics at both pH 2.2 and 6.8, indicating that bulk diffusion was not the kinetic-limiting step. Application of the shrinking core model (SCM) to the data suggested a surface reaction-controlled mechanism, rather than a pore diffusion mechanism. The leaching of fixated FGD material increased with decreasing pH, suggesting it can be described by a combination of an intrinsic hydration reaction and a proton-promoted dissolution reaction. X-ray diffraction (XRD) and elemental composition analyses before and after leaching suggests that for most elements a number of solid phases controlled the leaching process.  相似文献   

8.
Heavy metals in soils may adversely affect environmental quality. In this study, we investigated the release of Zn, Cd, Pb, and Cu from four contaminated soils by column leaching and single and sequential batch extractions. Homogeneously packed soil columns were leached with 67 mL/g 10(-2) M CaCl2 to investigate the exchangeable metal pool and subsequently with 1400 mL/g 10(-2) M CaCl2 adjusted to pH 3 to study the potential of metal release in response to soil acidification. In two noncalcareous soils (pH 5.7 and 5.1), exchange by Ca resulted in pronounced release peaks for Zn and Cd that were coupled to the exchange of Mg by Ca, and 40 to 70% of total Zn and Cd contents were rapidly mobilized. These amounts compared well with exchangeable pools determined in single and sequential batch extractions. In two soils with near-neutral pH, the effluent concentrations of Zn and Cd were several orders of magnitude lower and no pronounced elution peaks were observed. This behavior was also observed for Cu and Pb in all four soils. When the soils were leached at pH 3, the column effluent patterns reflected the coupling of CaCO3 dissolution (if present) and other proton buffering reactions, proton-induced metal release, and metal-specific readsorption within the soil column. Varying the flow rate by a factor of five had only minor effects on the release patterns. Overall, Ca exchange and subsequent acidification to pH 3 removed between 65 and 90% of total Zn, Cd, Pb, and Cu from the four contaminated soils.  相似文献   

9.
Soil testing to predict phosphorus leaching   总被引:12,自引:0,他引:12  
Subsurface pathways can play an important role in agricultural phosphorus (P) losses that can decrease surface water quality. This study evaluated agronomic and environmental soil tests for predicting P losses in water leaching from undisturbed soils. Intact soil columns were collected for five soil types that a wide range in soil test P. The columns were leached with deionized water, the leachate analyzed for dissolved reactive phosphorus (DRP), and the soils analyzed for water-soluble phosphorus (WSP), 0.01 M CaCl2 P (CaCl2-P), iron-strip phosphorus (FeO-P), and Mehlich-1 and Mehlich-3 extractable P, Al, and Fe. The Mehlich-3 P saturation ratio (M3-PSR) was calculated as the molar ratio of Mehlich-3 extractable P/[Al + Fe]. Leachate DRP was frequently above concentrations associated with eutrophication. For the relationship between DRP in leachate and all of the soil tests used, a change point was determined, below which leachate DRP increased slowly per unit increase in soil test P, and above which leachate DRP increased rapidly. Environmental soil tests (WSP, CaCl2-P, and FeO-P) were slightly better at predicting leachate DRP than agronomic soil tests (Mehlich-1 P, Mehlich-3 P, and the M3-PSR), although the M3-PSR was as good as the environmental soil tests if two outliers were omitted. Our results support the development of Mehlich-3 P and M3-PSR categories for profitable agriculture and environmental protection; however, to most accurately characterize the risk of P loss from soil to water by leaching, soil P testing must be fully integrated with other site properties and P management practices.  相似文献   

10.
Many secondary materials are being considered for use as substitutes for natural aggregates in highway applications due to their suitable engineering and economic properties. During the design life of the application, recycled materials are exposed to freeze/thaw cycles and other aging processes such as carbonation, coupled with intermittent infiltration/wetting by precipitation events. In such scenarios, leaching of material constituents is a primary pathway for environmental impact. This paper presents results of the effect of freezing and thawing on the leaching behavior of major and minor constituents from a laboratory formulated granular cement-based material. Scenarios considered included water percolating through the material (flow-through) and run-off (flow-around), both important leaching pathways in highway environments. The effect of moisture content at the time of freezing, number of freeze/thaw (F/T) cycles, and material size reduction were investigated. F/T exposure and subsequent infiltration/wetting resulted in consolidation and self-cementing of the granular cement-based material. For the flow-around scenario, F/T exposure resulted in a reduction in constituent release with time and increasing F/T cycles. For the flow-through scenario, moisture content at the time of freezing was an important parameter and an increase in the release was initially observed due to preferential flow/cracks and/or constituent redistribution prior to a decrease that resulted from self-cementing during further thawing and percolation.  相似文献   

11.
An experiment was performed to better understand to what extent nitrogen fertilization rate and date and amount of urine deposition, when acting in combination, influence nitrate leaching under grassland. Leaching was studied during two successive winters using 2-m2 grassed lysimeters under three levels of N fertilization (0, 150, and 300 kg N ha(-1) yr(-1), referred to as 0N, 150N, and 300N, respectively), two levels of 15N-labeled urine (105 and 165 kg N ha(-1), referred to as A2 and A3, respectively), and three dates of urine application (spring, summer, and fall). During the first winter, total N leaching losses varied between 2 and 50 kg N ha(-1). When tested in combination, N applied as urine to grassland resulted in three times the total N loss by leaching that occurred following N fertilization in the first winter (4.3, 20.8, 34.9, 14.2, 17.1, and 28.7 kg NO3- -N ha(-1) for no urine, A2, A3, ON, 150N, and 300N, respectively). Leaching of 15N urine significantly depended on the date of application: 6.6, 17.3, and 29.1 kg for spring, summer, and fall, respectively. A similar pattern was observed for the contribution of 15N urine to total N leaching with 4.3, 12.9, and 21.4%. However, urine application, both in terms of amount and date, showed very little long-term effect on these N losses in Year 2. In our conditions of low winter rainfall and drainage, grazing management (through season, urinary N amounts, and urine N concentration) resulted in a higher impact on water nitrate quality than moderate N fertilization management.  相似文献   

12.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

13.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   

14.
Wildfire effects on soil nutrients and leaching in a tahoe basin watershed   总被引:1,自引:0,他引:1  
A wildfire burned through a previously sampled research site, allowing pre- and post-burn measurements of the forest floor, soils, and soil leaching near Lake Tahoe, Nevada. Fire and post-fire erosion caused large and statistically significant (P < or = 0.05) losses of C, N, P, S, Ca, and Mg from the forest floor. There were no statistically significant effects on mineral soils aside from a decrease in total N in the surface (A11) horizon, an increase in pH in the A11 horizon, and increases in water-extractable SO4(2-) in the A11 and A12 horizons. Burning caused consistent but nonsignificant increases in exchangeable Ca2+ in most horizons, but no consistent or statistically significant effects on exchangeable K+ or Mg2+, or on Bray-, bicarbonate-, or water-extractable P concentrations. Before the burn, there were no significant differences in leaching, but during the first winter after the fire, soil solution concentrations of NH4+, NO3-, ortho-P, and (especially) SO4(2-) were elevated in the burned area, and resin lysimeters showed significant increases in the leaching of NH4+ and mineral N. The leaching losses of mineral N were much smaller than the losses from the forest floor and A11 horizons, however. We conclude that the major short-term effects of wildfire were on leaching whereas the major long-term effect was the loss of N from the forest floor and soil during the fire.  相似文献   

15.
Nutrient leaching in a Colombian savanna Oxisol amended with biochar   总被引:3,自引:0,他引:3  
Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake.  相似文献   

16.
A semi-dynamic leaching test was carried out for metallurgical wastes and ore samples from the uranium and copper mining industry over a 142 day period using distilled water and 0.1N NaNO(3) as solvents. Laser fluorimetry was used as the analytical technique to determine the total uranium content in the leachates. The cumulative leach fraction (CLF) of uranium release from the samples was calculated to be 0.22, 0.22, 0.07 and 0.39% for rock, uranium tailings, copper kinker ash samples and copper tailings respectively using distilled water as solvent and 0.31, 0.27, 0.05 and 0.59% for the same matrices using 0.1N NaNO(3). The release of mobile uranium fraction was very slow, being faster in the initial stage and then attained a near steady state condition. The diffusion coefficient and bulk release of uranium from the samples have been calculated. The processes governing the release of uranium from these matrices have been identified to be surface wash-off and diffusion. Hence the use of weak solvents (leach out the mobile/exchangeable fraction of uranium) under semi-dynamic conditions aids the determination of leaching parameters and identification of the leaching mechanism for mobile uranium fraction from different matrices by slow leaching processes.  相似文献   

17.
A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed during column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.  相似文献   

18.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

19.
Data from 89 forested catchments and plots across Europe were used to define empirical relationships between aluminum leaching and input fluxes of major ions, output fluxes of major ions, ecosystem parameters such as soil pH, and combinations of these. Forests that release dissolved Al to seepage or surface waters are located primarily in areas receiving the highest loading of acid rain, and the output flux of Al shows the highest correlations to the throughfall flux of inorganic nitrogen, the output fluxes of NO3-, H+, and SO4(2-), and the mineral soil pH. If the speciation of Al is taken to be Al3+ (an overestimate), Al is released in a nearly 1:1 molar charge ratio with the sum of NO3- and SO4(2-) in runoff or seepage water over a wide range of basepoor bedrock types and acid deposition across Europe. The empirical data point to a threshold range of N deposition of 80 to 150 mmolc N m(-2) yr(-1) and a (less clearly defined) range of S deposition of 100 to 200 mmolc SO4(-2) m(-2) yr(-1) above which Al released from forests exceeds 100 mmolc Al m(-2) yr(-1). Within this threshold range, the sites that release little or no dissolved Al are those that continue to assimilate input N and/or have high soil pH (>4.5).  相似文献   

20.
Ground water pollution due to herbicide leaching has become a serious environmental problem. Imazaquin [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid] is an herbicide used to control broadleaf weeds in legume crops. Imazaquin is negatively charged at the basic pH of calcareous soils and exhibits high leaching potential in soils. Our aim was to design formulation of imazaquin to reduce herbicide leaching. Imazaquin sorption on pillared clay (PC) and crystal violet (CV)-montmorillonite complexes was studied. The CV-montmorillonite complexes become positively charged with adsorption of CV above the cation exchange capacity (CEC) of montmorillonite, and thus can sorb imazaquin. The Langmuir equation provides a good fit to isotherms of imazaquin sorption on PC and CV-montmorillonite complexes, but for charged complexes an equation that combines electrostatics with specific binding was preferred. Maximal imazaquin sorption was 17.3 mmol kg-1 for PC and 22.2 mmol kg-1 for CV-montmorillonite complexes. The extents of imazaquin desorption into water were 21% for PC and 5% for CV-clay complexes. The presence of anions decreased imazaquin sorption on both sorbents in the sequence phosphate > acetate > sulfate. Reduction of imazaquin sorption by the anions and the extent of its desorption in electrolyte solutions were higher for PC than for CV-clay complexes. Leaching of imazaquin from CV-montmorillonite formulations through soil (Rhodoxeralf) columns was two times less than from PC formulations and four times less than that of technical imazaquin. The CV-montmorillonite complexes at a loading above the CEC appear to be suitable for preparation of organo-clay-imazaquin formulations that may reduce herbicide leaching significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号